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ABSTRACT

The objective of this paper is to study the dynamics of numerics of time discretizations

for various 2 × 2 systems of first-order autonomous nonlinear ordinary differential equations

(ODEs) with known analytic solutions. The main emphasis is to gain a basic understanding of

the difference in the dynamics of numerics between the scalars and systems of nonlinear ODEs.

It is found that in addition to the phenomenon of stable spurious steady-state numerical solutions

occurring below and above the linearized stability limit of the exact steady states, more complex

phenomena such as stable spurious limit cycles, stable spurious higher dimensional tori and the

changing type and stability of numerical asymptotes were observed. With the aid of a parallel

Connection Machine (CM2), the complex behavior and sometimes fractal like structure of the

associated basins of attraction of the various widely used time discretizations in computational

fluid dynamics (CFD) are revealed and compared. The underlying purpose of this study is to set

the baseline global asymptotic solution behavior of the schemes so that one can use them more

wisely in other more complicated settings such as when nonlinear systems of partial differential
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equations (PDEs) for which the exact solutions are not known are encountered in nonlinear

sciences and in particular in CFD. This is especially important when there are no experimental

data for comparison and/or when the numerical solution indicates a new flow structure not easily

understood, The results of this investigation can be used as an explanation for possible causes

of error, and slow convergence and nonconvergence of steady-state numerical solutions when

using the time-dependent approach for nonlinear hyperbolic or parabolic PDEs. The knowledge

gained can also aid the construction of appropriate iteration methods, relaxation procedures, or

preconditioners for convergence acceleration strategies in numerically solved boundary-value

problems of nonlinear PDEs, since most of these procedures can be viewed as approximations

of time-dependent PDEs. It can also enhance the understanding of flow patterns in 2-D and

3-D flow visualizations of numerical data.



I. INTRODUCTION

Thetool that is utilized for thecurrentstudybelongsto amultidisciplinaryfield of studyin
numericalanalysis,sometimesreferredto as"The Dynamicsof NumericsandTheNumerics
of Dynamics4''. Here,to studythedynamicsof numerics(dynamicalbehaviorof a numerical
scheme)meansto studythelocalandglobalasymptoticbehaviorandbifurcationphenomenaof
thenonlineardifferenceequationsresultingfrom finitediscretizationof anonlineardifferential
equation(DE) subjectto the variationof discretizedparameterssuchasthe time step,grid
spacing,numericaldissipationcoefficient,etc.In thispaper,standardterminologiesinnonlinear
dynamics,chaoticdynamics[1-4] andcomputationalfluid dynamics(CFD) areassumed.For
anintroductionto thedynamicsof numericsandits impliciationsfor algorithmdevelopmentin
CFD,see[5,6] andreferencescitedtherein.Tokeepthispapersomewhatself-contained,some
of the ideasandlogisticsdiscussedin [5-8] thatmotivatedthepresentstudyarerepeatedhere.

1.1. Background

Thephenomenonthat a nonlinearDE andits discretizedcounterpartcanhavedifferentdy-
namicalbehavior(asymptoticbehavior)wasnot uncoveredfully until recently. Aside from

truncation error and machine round-off error, a more fundamental distinction between the DE

(continuum) and its discretized counterparts for genuinely nonlinear behavior is extra solutions

in the form of spurious stable and unstable asymptotes that can be created by the numerical

method. Here we use the term "spurious asymptotic numerical solutions" to mean asymptotic

solutions that satisfy the discretized counterparts but do not satisfy the underlying ordinary

differential equations (ODEs) or partial differential equations (PDEs). Asymptotic solutions

here include steady-state solutions (fixed points of period one), periodic solutions, limit cycles,

chaos and strange attractors. See section III and [1-5] for definitions.

Iserles [9] showed that while linear multistep methods (LMMs) for solving ODEs possess

only the fixed points (fixed points of period one) of the original DEs, popular Runge-Kutta

methods may exhibit additional, spurious fixed points. It has been demonstrated (see for exam-

ple [5,10,11] for the scalar case, and [7,8] for nonlinear reaction-convection model equations)

that such spurious fixed points may be stable below the linearized stability limit of the scheme.

More recently Iserles et al. [12,13], Hairer et al. [14] and Humphries [15] further advanced

the theoretical understanding of the dynamics of numerics for ODE solvers. Iserles et al. and

Hairer et al. classified and gave guidelines and theory on the types of Runge-Kutta methods

that do not exhibit spurious period one or period two fixed points. Humphries [15] showed that

under appropriate assumptions if stable spurious fixed points exist as the time-step approaches

zero, then they must either approach a true fixed point or become unbounded. However, con-

vergence in practical calculations involves a finite time step At as the number of integrations

n _ c<_ rather than At _ 0, as n --_ oo. There appear to be missing links between theoretical

development and practical scientific computation. Our aim is to provide some of these missing

links. To be more precise, we want to study the global asymptotic behavior of ODE solvers for

4 Named after the First IMA Conference on Dynamics of Numerics and Numerics of Dynamics, Univer-

sity of Bristol, England, July 31 - August 2, 1990



nonlinear ODEs when finite but not extremely small 2xt is used.

One consequence of the existence of spurious asymptotes below or above the linearized

stability limit of the schemes is that these spurious features may greatly affect the dynamical

behavior of the numerical solution in practice due to the use of a finite time step. Indeed

this will be the case not only for stable spurious asymptotes but also for unstable spurious

asymptotic numerical solutions. More importantly, spurious fixed points other than period one

and numerical chaos can be admitted by even the LMMs, including the simple Euter scheme.

See [5,16] and section V for details. Thus, associated with the same (common) steady,state

solution, the basin of attraction of the DEs (which initial conditions lead to which asymptotic

states) might be very different from that of the basin of attraction of the discretized counterparts

[5,8,16-18] due to the existence of spurious stable and unstable asymptotic numerical solutions.

The result is a separate dependence on initial data for the individual DEs and their discretized

counterparts. In other words, it is possible that for a given physical initial datum (associated with

a particular steady state of the nonlinear DE) the numerical solution can converge to a wrong

(but physical) steady state or a spurious asymptote. Here, a basin of attraction is the set of

initial data whose solution curves all converge towards the same asymptote. As can be Shown

from our investigation, the difference in the basins of attraction between the continuum and

its discretized counterparts occurs even when a linearized fon-n of an implicit unconditionally

stable LMM type of method is used (see also [8,18]). The difference is less pronounced if the

resulting nonlinear algebraic equations are solved by a desired iteration procedure [9]. The

various aspects that are addressed in this paper but not in [9] for different iteration procedures

in solving the resulting nonlinear algebraic equations will be reported in a future paper.

1.2. Relevance and Motivations

Although the understanding of the dynamics of numerics of systems of nonlinear ODEs is

important in its own right and has applications in the various nonlinear science fields, our main

emphasis is CFD applications. Time-marching types of methods are commonly used in CFD

because the steady PDEs of higher than one dimension are usually of the mixed type. When

a time-dependent approach is used to obtain steady-state numerical solutions of a fluid flow or

a steady PDE, a boundary value problem (BVP) is transformed into an initial-boundary value

probiem (IBVP) with unknown initial data. If the steady PDE is strongly nonlinear and/or con-

tains stiff nonlinear source terms, phenomena such as slow convergence, nonconvergence or

spurious steady-state numerical solutions can occur even though the time step is well below

the linearized stability limit and the initial data are physically relevant. One of our goals is to

search for logical explanations for these phenomena via the study of the dynamics of numer-

ics. Here the term "time-dependent approach" is used loosely to include some of the iteration

procedures (due to implicit time discretizations), relaxation procedures, and preconditioners for

convergence acceleration strategies used to numerically solve steady PDEs. This is due to the

fact that most of these procedures can be viewed as approximations of time-dependent PDEs

(but not necessarily the original PDE that was under consideration). If one is not careful, nu-

merical solutions other than the desired one of the underlying PDE can be obtained (in addition

to spurious asymptotes due to the numerics).



/

It is a common practice in CFD to use fixed, variable or "local" time stepping in conjunction

with standard relaxation procedures and preconditioners to accelerate convergence to steady-

state numerical solutions. Usually these strategies consist of tuning parameters and are highly

scheme and problem dependent. In addition, unlike ODE solvers, good error control in vari-

able time step procedures for time-dependent PDEs has not been established. Moreover, for

implicit time-marching schemes the use of a local time step procedure does not always per-

form better than a fixed time step procedure, depending on the type of implicit linearization,

acceleration strategies and flow physics. See for example [19]. There appears to be no system-

atic generalized theory to guide in automating the tuning of these parameters or the choosing

of time-stepping procedures. It is our belief that the understanding of the symbiotic relation-

ship between the strong dependence on initial data and permissibility of spurious stabte and

unstable asymptotic numerical solutions at the fundamental level can guide the tuning of the

numerical parameters and the proper and/or efficient usage of numerical algorithms in a more

systematic fashion. It can also explain why certain schemes behave nonlinearly in one way

but not another. Here strong dependence on initial data means that for a finite &t that is not

sufficiently small (approaching zero), the asymptotic numerical solution depends almost con-

tinuously on the initial data. Unlike nonlinear problems the asymptotic numerical solutions of

linear or weakly nonlinear problems are independent of At as long as At is below a certain

upper bound. We remark that strong dependence on initial data is different from sensitivity to

initial data in chaotic phenomenon.

Due to the complexity of the subject matter, all of our study concerns fixed time step (and

fixed grid spacing) time-marching methods. The fixed or variable time step study can also shed

some light in identifying whether certain flow patterns are steady or unsteady. See [19-21] for

some examples. Proper regulation of a variable time step to prevent the occurence of spurious

steady-state numerical solutions will be a subject of future research. Also, we remark that in

order to isolate the different causes and cures of slow convergence and nonconvergence of time-

marching methods, our study concerns nonlinearity and stiffness that are introduced by DEs

containing smooth solutions. Nonlinearity and stiffness that are introduced by the scheme, the

coupling effect in the presence of a source term (terms) in coupled system of PDEs, the highly

stretched nonuniform structured and unstructured grids, the discontinuities in grid interfaces

and/or the discontinuities inherent in the solutions, and external flows that need special boundary

condition treatment with a truncated finite computation domain are added factors and require

additional treatment or different analysis. These are not considered at the moment. The reader

is reminded that our attempt is to explain (besides the aforementioned factors) one of the basic

causes of error, slow convergence and nonconvergence of time-marching methods in practical

computations.

Nonunique steady-state solutions of nonlinear DEs vs. Spurious Asymptotes: The phenomenon

of generating spurious steady-state numerical solutions (or other spurious asymptotes) by cer-

tain numerical schemes is often confused with the nonuniqueness (or multiple steady states) of

the DE. In fact, the existence of nonunique steady-state solutions of the continuum can com-

plicate the numerics tremendously (e.g., the basins of attraction) and is independent of the

occurence of spurious asymptotes of the associated scheme. But, of course, a solid background



in the theoryof nonlinearODEs andPDEsandtheir dynamicalbehavioris aprerequisitein
thestudyof thedynamicsof numericsfor nonlinearPDEs.Table1.1showsthepossiblestable
asymptoticsolutionbehaviorfor DEsandtheir discretizedcounterparts.SeeYeeet al. [5] for
adiscussion.It is notedthattheapproachandprimary goalof ourwork is quitedifferentfrom
the work of e.g.,BeamandBailey [22] andJameson[23]. Themain goalof [22] and [23] is
to studythenonuniquesteady-statesolutionsadmittedby thePDEasthephysicalparameteris
varied. Ourprimaryinterestis to establishsomeworkingtoolsandguidelinesto helpdelineate
thetruephysicsfrom numericalartifactsvia thedynamicsof numericsapproach.Theknowl-
edgegainedfrom ourseriesof studies[5,7,8]hopefullycanshedsomelight on thecontroversy
abouttheexistenceof multiplesteady-statesolutionsthroughnumericalexperimentsfor certain
flow typesof theEulerand/orNavier-Stokesequations.

Linearized Analysis vs Nonlinear Solution Behavior: Another phenomenon is that the use of

linearized analysis as a guide to numerically studying strongly nonlinear DEs (ODEs or PDEs)

may be insufficient and may lead to misleading results. Linearized stability analysis (With the

inital data sufficiently close to the exact solution) sometimes can only supply part of the nonlin-

ear stability behavior, e.g., before a bifurcation point occurs [1-4], since linearized stability is a

local phenomenon. If it is possible, performing a global bifurcation analysis woutd elucidate a

more complete nonlinear stability behavior. To obtain a global picture of the nonlinear stability

of the bifurcation part of the analysis, one has to resort to more sophisticated mathematical tools

such as local and global bifurcation theories [1-4]. This distinction between linearized stability

and nonlinear stability analysis is carried over to the discretized counterparts as well and is

used in the discussion throughout the paper. The distinction between linearized analysis mad

nonlinear analysis was discussed and illustrated in [5,7,8,i7]. For the discretized counterpart.

the situtation is further compounded in practical computations for highly coupled nonlinear

systems of PDEs where the exact linearized stability limit is usually not computed, but rather

a frozen coefficient procedure at each time step with a fixed grid spacing is used to approxi-

mate the stability limit. Thus, if one is not careful, it is possible that erroneous results can be

achieved unknowingly in practical computations.

Depending on the initial data and the scheme, the possible asymptotic solution behavior of

numerical schemes operating at time steps below or above the von Neumann limit, CFL limit or

linearized stability limit for nonlinear ODEs and/or time-dependent nonlinear PDEs is summa-

rized in Table 1.2. Here, the CFL limit is different from the Iinearized stability limit. Note that

strictly speaking yon Neumann and CFL timits are different but their limits may be the same.

In Tables 1.2 and 1.3 we have grouped them in the same category. The definition of linearized

stability is stated in Table 1.3. Each of the phenomena listed in Table 1.2 can be supported

by simple model DEs with commonly used finite discretizations in CFD (cf. [5,8,16,17] and

the present paper). Table 1.3 compares the various guidelines, assumptions, usage and applica-

bility of four different methods in obtaining stability criterion for time step constraints for the

time-dependent approach to the steady-state numerical solutions. Note that the third row: under

the assumption and usage heading (concerning inside and outside the stability interval) reflects

some of the conventional practice in CFD rather than a statement of truth. A high percentage

of the current computer codes in CFD are operated under the guidelines of the first stability



criterion, Without thesour6eterm, the first threestability proceduresareequivalentfor 1-D
linear initial valueproblems. In the absenceof sourcetermsin nonlinearproblems,the first
threeproceduresareequivalentwhentheiteratedsolutionsarevery neartheexactsteady-state
solution,sinceperturbingaroundtheiteratedsolutionatthe"frozencoefficientor timeleveln"
is approximatelyequaltoperturbingaroundtheexactsteadystate.Whenmultiplesteadystates
of thegoverningDE and/orspuriousasymptotesexist and/orin thepresenceof sourceterms,
theseproceduresaredifferent. Although thelast threestability procedurescannotbe realized
in practice,theyarein theorderof increasing:importancein providingcloserstabilitybehavior
for stronglynonlinearproblems.

1.3. Primary Goal of This Series of Four Papers

The primary goal of this series of papers has been expanded since part I was published.

The underlying purpose of this paPer and the companion papers [5,7,8] (under the assump-

tions stated in the second and third paragraphs of section 1.2) is to lay the foundation for the

utilization of the dynamics of numerics in algorithm development for computational sciences

in general and CFD in particular. The intent of these papers is (a) to reveal the logistics,

methodology, and usages of nonlinear dynamics for CFD, (b) to complement the commonly

used linearized stability theory in CFD, (c) to search for possible explanations on the causes

of errors and slow convergence and nonconvergence of steady-state numerical solutions when

using the time-dependent approach to the steady states, (d) to guide the construction of appro-

priate iteration methods, relaxation procedures, or preconditioners for convergence acceleration

strategies in numerically solved BVPs of nonlinear PDEs and (e) to enhance the understanding

of flow visualization of numerical data such as lines of separation and re-attachment points,

etc. Referring to the last issue, if the governing PDE and/or its discretized counterparts possess

higher than three-dimensional (or infinite dimensional) dynamical behavior, the projections of

these higher dimensional dynamics onto a 2-D or 3-D topology can lead to misinterpretation of

flow types. As can be seen later, depending on the scheme, initial data and discretized values,

the numerics can alter the true flow type. See Refs. [24-32] for some investigations and issues

on the study of flow visualizations. Referring to the third and fourth issues above, in many CFD

computations the steady-state equations are PDEs of the mixed type and a time-dependent ap-

proach can avoid the complication of dealing with elliptic-parabolic or elliptic-hyperbolic types
of PDEs.

This is part II of a series of papers on the same topic. Part I [5] concentrated on the dynamical

behavior of time discretizations for scalar nonlinear ODEs. The intent of part I was to serve as

an introduction to motivate this concept to researchers in the field of CFD and to present new re-

sults for the dynamics of numerics for first-order scalar autonomous ODEs. The present paper,

the second of this series, is devoted to the study of the dynamics of numerics for 2 × 2 systems

of ODEs. Lafon and Yee [7], the third of this series, was devoted to the study of the dynamics

of numerics of commonly used numerical schemes in CFD for a model reaction-convection

equation. Part III addressed four different numerical aspects of a model reaction-convection

equation. It can be shown that (1) stable and unstable spurious steady-state numerical solutions

can be independently introduced by spatial and temporal discretizations satisfying the same
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boundaryconditionandinitial data,(2) thevariouswaysof discretizing(spatialand/ortempo-
ral) thereactionterm canaffectthe stability of the spuriousaswell astheexactsteady-state
solutions,and (3) the numericalphenomenonof incorrectpropagationspeedsof discontinu-
ities canbe linked to the existenceof somestablespurioussteady-statenumericalsolutions.
Thepossiblecauseof convergenceto a spurioussteadystateanda suggestionto avoidspuri-
oussteadystateswere alsodiscussedin part III. Lafon and Yee [8]. the fourth of this series
wasdevotedto amoredetailedstudyof the effectof numericaltreatmentof nonlinearsource
termsonnonlinearstabilityof thesteady-statenumericalsolutionfor thesamemodelnonlinear
reaction-convectionBVP.Thesymbioticrelationshipbetweenthestrongdependenceon initial
dataandthepermissibilityof spuriousstableandunstableasymptoticnumericalsolutionsfor
implicit numericaltreatmentof the sourcetermswith linearization,aswell asmoredetailed
nonlinearanalysisthan[7] of explicitnumericaltreatmentof thesourcetermswereconsidered.
A summaryof [7,8] canbefoundin [33].A summaryof thefourpartsandthelogisticsandthe
methodologyfor thedynamicsof numericsin numericalalgorithmdevelopmentfor CFDwere
summarizedin [6]. Reference[6] alsorevealedthedifficultiesbehindtheconstructionof suit-
ablenumericalschemesanddiscussedpreliminaryideasfor constructingnumericalschemesfor
hypersonicreactingflowsandcombustionrelatedproblems.In ourcompanionpapers[10,11],
a theoreticalbifurcationanalysisof a classof explicit Runge-Kuttamethodswaspresented.

1.4. Objectives

Thesymbioticrelationshipbetweenthestrongdependenceon initial dataandthepermissi,
bility of spuriousstableandunstableasymptoticnumericalsolutionsfor commonlyusedtime
discretizationsin CFD is illustratedfor four different nonlinear model ODEs with _own an-

alytic solutions. This is an attempt to understand the global asymptotic behavior of time dis-

cretizations for highly nonlinear and stiff DEs. The objective is to gain a basic understanding
i

of the difference in the dynamics of numerics between scalars and systems of strongly nonlin-

ear ODEs. A primary distinction between the dynamics of scalars and systems of first-order

autonomous ODEs is that there is no limit cycle or higher dimensional tori counterparts for the

scalar case. Consequently, spurious limit cycles, higher dimensional tori or the changing type

and stability of fixed points can be introduced by the numerics when solving systems of ODEs

[16]. For example, saddle points can become stable or unstable nodes even though the flow

type of the DE remains unchanged. As can be seen from the present study, these phenomena

are independent of whether the schemes are explicit or implicit and/or LMMs. We conjecture

that the existence of stable spurious limit cycles might be one of the contributing factors in

nonconvergence of the time-dependent approach to the steady state. Also the various spurious

features of the numerics can contribute to the misinterpretation of flow types in flow visualiza-

tions of numerical data. The underlying goal is to investigate the effect of time discretizations

on the existence and stability of spurious asymptotic numerical solutions of PDEs when time

splitting [34], method of lines (MOL) [35], finite element methods, and inertial manifold (IM)

[36,44] and approximate inertial manifold (AIM) [45,46] approaches are used to numerically

approximate certain types of hyperbolic and parabolic PDE solutions. Referring to the second

approach, depending on the number of grid points "J" used, the dimensions of the resulting



systemof semi-discreteapproximationsof ODEscanbevery large. Fromthetheoryof non-
linear dynamics:for ODEs, it is well known that much of the established theory and known

behavior of nonlinear dynamics are restricted to lower dimensional first-order ODEs (or for

problems that exhibit lower dimensional dynamical behavior). In addition, if higher than two

time levels of ODE solvers are used, the dynamics of these discretized counterparts usually

are richer in structure and more complicated to analyze than their one or two time-level ODE

solver cousins. Therefore, in order to gain a first hand understanding of the subject we restrict

our study to 2 × 2 systems of first-order autonomous ODEs and two time-level ODE solvers

with a fixed time step. See sections IV - VI for more details.

Outline: The outline of this paper is as follows. Section II discusses the connection of the

dynamics of numerics for systems of ODEs and numerical approximations of time-dependent

PDEs. We also discuss in what manner the study of the dynamics of numerics can enhance the

understanding of flow patterns in 2-D and 3-D flow visualization of numerical data obtained

from finite discretization of a PDE. Section III reviews background material: for nonlinear ODEs

and ODE solvers. Section IV describes four 2 × 2 systems of nonlinear first-order autonomous

model ODEs. Section V describes the 11 time discretizations (ODE solvers) and the associated

bifurcation diagrams for the four model ODEs. Section VI discusses the combined basins of

attraction and bifurcation diagrams for the underlying schemes for the four model equations.

Comparison between a linearized implicit Euler and Newton method is briefly discussed in

section 6.5. The paper ends with some concluding remarks in section VII.



II. CONNECTIONS BETWEEN THE DYNAMICS OF NUMERICS OF SYSTEMS OF

ODEs AND NUMERICAL APPROXIMATIONS OF TIME-DEPENDENT PDEs

For finite discretizations of PDEs. spurious asymptotes and especially spurious steady states

can be independingly introduced by time and spatial discretizations [7,8,18]. The interaction

between temporal and spatial dynamical behavior is more complicated when one is dealing with

the nonseparable temporal and spatial finite-difference discretization such as the Lax-Wendroff

type. Also, the analysis would be m ore complex if the governing nonlinear PDE possessed

more than one stable steady-state solution in addition to the spurious ones that are pureiy due
to the numerical method.

In order to gain a first hand understanding of the dynamics of numerics for time-dependent

PDEs, separable temporal and spatial finite difference methods (FDM) should be studied first

since the analysis and the different features of the numerics due to temporal and spatial dis-

cretizations can become more apparent by this type of FDM. A standard method for obtaining

such a FDM is the method of lines procedure where the time-dependent PDE is reduced to a

system of ODEs (by replacing the spatial derivatives by finite difference approximations). The

resulting approximation is called semi-discrete, since the time variable is left continuous. The

semi-discrete system in turn can be solved by the desired ODE solvers. Similar semi-discrete

systems can be obtained by finite element methods except in this case an additional mass ma-

trix is involved. Besides the MOL approach, coupled nonlinear ODEs can arise in many other

ways when analyzing nonlinear PDEs. See for example [24-32,36-50]. Among these possi-

bilities, the idea of IM and AIM for incompressible Navier-Stokes [36-46], the relationship

between shock waves, heteroclinic orbits of systems of ODEs [49,50], and flow visualization

of numerical data [24-32] are touched upon in sections 2.3 - 2.5.

2.1. Bifurcation Study by/he Method of Lines Approach

(For Time-Dependent Approach to the Steady-State Numerical Solutions)

With the MOL procedure the analysis of the occurrence of spurious asymptotes for the FDM

can be split into five separate stages. First, the fixed points or the steady solutions for each of the

associated systems of ODEs are solved. Second, the types of bifurcation phenomena in terms

of variation of system parameters as well as the discretized parameters such as grid spacing,

coefficient of numerical dissipation, etc. are identified. Third, the linearized stability and non-

linear stability (in terms of bifurcation theory) around these fixed points are analyzed. Fourth,

a bifurcation analysis similar to the fourth stage for the fully discretized set of nonlinear finite

difference equations is performed. Fifth, time discretizations are applied to the semi-discrete

system of ODEs and linearized stability is performed to investigate in what maimer the time

discretization can destabilize the stable spurious steady states or vice versa. Note that the order

of stages (4) and (5) is not important. Stages one to three involves spurious asymptotes strictly

introduced by the spatial discretizations. Stages four and five involves spurious asymptotes

introduced by both the time and spatial differencings. See [7] for the five stages of analysis for

a model reaction-convection equation.
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Someglobalsolutionbehaviorof thesefixedpointscanbeobtainedbythepseudoarclength
continuationmethoddevisedby Keller [51], a standardnumericalmethodfor obtainingbi-
furcationcurvesin bifurcationanalysis.A popularbifurcationcomputerprogramAUTO [52]
(whichcontainsthepseudoarclengthcontinuationmethod)canbemodifiedto caterto thePDE
study. As canbeseenfrom our study[7,8], onedeficiencyof thepseudoarclengthcontinua-
tion method(AUTO) is thatit cannotprovidethecompletebifurcationdiagramsinceaknown
solution for eachof the main bifurcationbranchesis neededbeforeonecancontinuethe so-
lution alonga specificmainbranch. For spuriousasymptotesthat aredueto the numerics,it
is usuallynot easyto evenlocatejust onesolutionon eachof thesebranches.To obtainthe
completeglobal asymptoticnumericalsolutionbehavior,knowledgeof the associatedbasins
of attractionis necessary.Due to the sizeof theproblem,our approach,in additionto using
thepseudoarclengthcontinuationmethodto obtainselectedcasesof thebifurcationdiagrams
andanalyticalmeans(if possible),is to obtainthemajority of thecasesby alargenumberof
numericalintegrationson theNASA AmesCM2. TheCM2 enablesusto obtainadetailedpic-
tureof theglobaldynamicalbehaviorof thediscretizationswhichwouldhavebeenimpossible
usingscalaror vectormachines.

Theresultsof thispaperindirectly canprovideabasicbackgroundfor thelast two stagesof
bufurcationstudyby theMOL approach.Theauthorsfeel thatthis is themoststraight-forward
wayof gainingacompleteunderstandingof what 'really' is happeningatthefundamentallevel.
But the key point is thatif theODEsareobtainedfrom somekind of semi-discreteapproxi-
mationsof PDEs,theresultingsystemof ODEsshouldcontainadditionalsystemparameters
anddiscretizedparametersasopposedto physicalproblemsgovernedby ODEs. Depending
on the differencingschemetheresultingdiscretizedcounterpartsof aPDE canbe nonlinear
in At, the grid spacing Ax and the numerical dissipation parameters, even though the DEs

consist of only one parameter or none. It is the introduction of new parameters due to the fi-

nite discretization that add a new dimension to the implication and interpretation of accuracy,

stability and convergence rate of asymptotic numerical solutions of strongly nonlinear PDEs.

Furthermore, it is important to distinguish between the complexity involved in the analysis of

the dynamics of numerics for ODEs and PDEs. The dynamics of numerics for PDEs involves

spatial as well as temporal dynamical behavior. Spurious asymptotes exist even for nonlinear

hyperbolic conservation laws containing zero source terms (cf. [17] and section V). Also, one

might be able to choose a "safe" ODE solver to avoid spurious stable steady states due to time

discretizations. However, spurious steady states introduced by spatial discretizations in nonlin-

ear hyperbolic and parabolic PDEs for CFD applications appear to be more difficult to avoid.

In the case of MOL approach, if spurious steady states due to spatial discretizations exist, the

resulting ODE system has already inherented this spurious feature as part of the exact solutions

of the semi-discrete case. We remark that spurious stable and unstable asymptotes other than

the steady states due to time and/or spatial discretizations are even more difficult to avoid than

spurious steady states. See sections V and VI for some illustrations. Taking for example the

nonlinear ODE models that are considered, it is relatively easy to avoid spurious steady states

since if a numerical steady state U* for the ODE dU/dt = S(U) is spurious, then S(u*) ¢ O.

This is not the case for spurious asymptotes such as limit cylces.

Note that nonlinearity can also be introduced by nonlinear schemes (in space) themselves.
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Schemessuchasthe total variationdiminishing(TVD) andessentiallynonoscillatory(ENO)
schemescanintroducenonlinearityinto thediscretizedequationeventhoughalinearconstant
hyperbolicequationis used. Seereference[53] for a backgroundon this subject. This as-

pect requires a separate investigation. Nonlinearities and stiffness that are introduced by other

sources as stated at the end of section 1.2 are a subject of future research. What is of concern

in this paper and the companion papers deals with nonlinearity and stiffness that are introduced

by the DE.

2.2. Possible Stable Asymptotic Solution Behavior for DEs and Their Discretized Coun-

terparts

Recall that Table 1.1 gives a comparison of the possible stable asymptotic solution behavior

of DEs (ODEs or PDEs) and their discretized counterparts. To be precise, consider a nonlinear

scalar reaction-convection-diffusion model equation

Ou Of(u) 02u
O_ + O_ - cO'ix2 + aS(u) e,a system parameters (2.1)

where f(u) is a linear or nonlinear function of u. The nonlinear source term (or the reaction

term) S(u) can be very stiff. Equation (2.1) can be viewed as a model equation in combustion

or as one of the species continuity equations in nonequilibrium flows (except in :this case, the

source term is coupled to other species mass fractions). Table 2.1 shows the classification

of the types of one-dimensional scalar time-dependent PDEs that are considered with time

and space variables that do not explicitly appear in the coefficients or nonlinear terms of the

equations. Also, the considered PDEs are conservation laws if the source term is not present

in the hyperbolic PDEs. Tables 2.2 and 2.3 show the possible existence of spurious asymptotic

numerical solutions for the MOL (or separable time and spatial discretizations) approach of

obtaining the full discretization for the type of scalar one-dimensional PDEs shown in Table 2.1.
Tables 2.2 and 2.3 assume the use of conservative schemes for the convection term. One can

see the drastic difference in the dynamics of numerics on linear and nonlinear time-dependent

PDEs. Depending on the types of PDEs and the associated numerical methods, the interplay

between the spatial and time discretizations on the permissibility of spurious asymptotes can be

very complex. The majority of the phenomena shown in Tables 1.1, 2.2 and 2.3 are supported

by simple examples in Refs. [5,7,8] and the present paper. If implicit LMMs are used for the

time discretization and if the resulting nonlinear alegbraic systems are solved exactly, some

of the results stated in tables 2.2 and 2.3 can be avoided. However, if the nonlinear algebraic

systems are solved iteratively, some of the results stated in Tables 2.2 and 2.3 are also possible.

In addition, if nonlinear spatial discretization such as TVD or ENO schemes is used, some of

the results stated in tables 2.2 and 2.3 might not be valid since nonlinear spatial discretizations

can introduce nonlinearities into the discretized counterpart even if the PDE is linear. In other

words, columns with the words "NO" in Tables 2.2 and 2.3 can be replaced with a "YES".

Tables 1.1, 2.2 and 2.3 reveal much of the nonlinear effects which cannot be explained fully by

linearized analysis except in unique cases or in weakly nonlinear problems.
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2.3. Inertial Manifold (IM) and Approximate Inertial Manifold (AIM)

The concept of IMs was introduced by Foias, Sell and Temam [36] in 1985. See Refs. [36-

44] for details of the subject. The key idea of IMs and AIM is to establish theories to aid in

better understanding of nonlinear phenomena and turbulence via the study of the interaction of

short and long wavelengths of dissipative systems. In summary, an IM is a finite-dimensional

submanifold that contains all the attractors and invariant sets of an infinite-dimensional dy-

namical system described by some dissipative PDEs. The principal objective of the theory is

to reduce the description of the long-term dynamics of the infinite-dimensional problem to a

finite system of ODEs. An attractive feature is that the reduction introduces no error in the

problem. That is, the IM contains all pertinent information about the long-term dynamics of

the original system. One of the key objectives of AIMs is to handle cases where the IM is not

known to exist. AIM also can help to find good algorithms for dealing with the IMs that are

known to exist. Moreover, AIM may also help reduce finite but extremely large systems of

ODEs to lower-dimensional problems. In a nut shell, the derivation of exact and approximate

IMs is based on the decomposition of the unknown function into large-scale and small scale

components. In the case of fluid dynamics, those structures can be identified as large and small

eddies. Thus IM or AIM corresponds to an exact or approximate interaction law between the

short and long wavelengths.

More recently, Kwak [43] has shown that the long-term dynamics of the two-dimensional in-

compressible Navier-Stokes equations can be completely described by a finite system of ODEs.

Kwak does so by finding a nonlinear change of variable that embeds the incompressible Navier-

Stokes equations in a system of reaction-diffusion equations that possess an IM. All of the the-

ories of IMs and AIMs are very involved and interested readers are encouraged to read [36-46]

and the references cited therein. The main purpose of this section is to show another aspect of

the importance of the study of the dynamics of numerics for nonlinear ODEs in relationship to
CFD.

2.4. Relationship Between Shock Waves and Heteroclinic Orbits of Systems of ODEs

Another example of the importance of understanding the "dynamics" and the "dynamics of

numerics" of systems of ODEs is related to the study of shocks using equilibrium bifurcation

diagrams of associated vector fields. This was introduced by Shearer et al. [50]. The authors

find of great interest how one can reduce the study of admissible shock wave solutions of a

2 × 2 hyperbolic conservation laws to the study of heteroclinic orbits of a system of nonlinear

ODEs. Further development in this area can help in constructing suitable approximate Riemann

solvers in numerical computations. The following material on the work of Shearer et al. on

this subject is excerpted from [49].

Consider a 2 × 2 system of hyperbolic conservation laws

ou oF(u)
o--(+ o. - o. (2.2)
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A shockwavesolutionof (2.2)with speeds is a piecewise constant function

f U_ if z < st
U(z, t)

U+ if z > st

that satisfies the Rankine-Hugoniot condition

(2.3)

F(u+)- F(U_)- ,(U+ - u_)= o. (2.4)

Such a shock wave is admissible if it possesses a viscous profile; i.e., a traveling wave solution

of the parabolic system

with boundary conditions

(21.5)

ou OF(U)
0_- + - 0_ = e0z2 ; e > 0 (2,6)

= o. (2.7)

Substitution of (2.5) into (2.6) and one integration, using the left-hand boundary condition

from (2.7), leads to the system of ordinary differential equations

dU
=- F(U) - F(U_)- s(U - U_), (2.8)

where _ = (x - st)/e, and U_ and s are parameters. One equilibrium (fixed point) of (2.8) is

U_. The triple (U_, U+, s) satisfies the R_ne-Hugoniot condition (2.4) if and only if U+ is

also an equilibrium of (2.8). In this case, the shock wave (2.3) has a viscous profile if and only

if there is an orbit (trajectory) of (2.8) from U_ to U+. An orbit that goes from one equilibrium

to another is called a heteroclinic orbit or a connection. Thus one has reduced the study of

admissible shock wave solutions of (2.2) to the study of heteroclinic orbits of the nonlinear

ODE (2.8),

One refers to a shock (2.3) as a Lax shock if U_ is an unstable node and U+ is a saddle

(a slow shock), or U_ is a saddle and U+ is a stable node (a fast shock). The connection

between this interpretation of the Lax condition and the usual one relating shock speeds to

characteristic speeds is made by noting that the eigenvalues of an equilibrium U are eigenvalues

of -sI + oF(U)otr,while the characteristic speeds are eigenvalues of oF(U)ou.• A Lax shock (2.3)

is called a compressive shock if it is admissible; i.e., if there is a heteroclinic orbit from U_

to U+. Since node-to-saddle and saddle-to-node heteroclinic orbits are stable to perturbation,

compressive shocks come in one-parameter families: for fixed U_, as s varies in some interval,

there exists a corresponding U+ connected to U_.

An admissible shock wave is undercompressive if both U_ and U+ are saddle points. The

trajectory from U_ to U+ is then a saddle-to-saddle connection. Such heteroclinic orbits are
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not stableto perturbation;for fixed U_, they are expected to occur only for isolated values of

s. Undercompressive shocks were not considered classically, but they arise naturally in solving

the Riemann problem near an umbilic point such as problems in elasticity and oil recovery.

In [49] Schecter and Shearer studied undercompressive shocks for nonstrictly hyperbolic

conservation laws by adding information to the equilibrium bifurcation diagrams (introduced

by Shearer et al.) about heteroclinic orbits of the vector fields. The augmented equilibrium

bifurcation diagrams are then used in the construction of solutions of Riemann problems.

2.5° Dynamics of Numerics and Flow Visualizations of Numerical Data

The use of flow visualization of numerical data (numerical solutions of finite discretizations

of e.g., fluid flow problems) in an attempt to understand the true flow physics has become in-

creasingly popular in the last decade. See, for example Refs. [24-32]. Many of the techniques

rely on the extraction of the boundary surfaces by analyzing a set of appropriate vector fields.

Approximations are then performed based on this set of vector fields. The study of the topolog-

ical features of certain flow physics based on the numerical data is then related to the study of

fixed points of the associated systems of ODEs. Fluid problems with known flow physics can

be used to reveal how well the associated vector fields of the numerical data can mimic the true

physics. It can also help to delineate spurious flow patterns that are solely due to the numerics.

However, we are entering into the regime where CFD is extensively used to aid the under-

standing of complicated flow physics that is not amenable to analysis otherwise. In the situation

where the numerical data indicate flow structures which are not easily understood, a good under-

standing of the spurious dynamics that can be introduced by the numerics is needed. See Refs.

[24-32] and references cited therein on the various aspects of flow visualizations of numerical

data. Another aspect is that if the governing DE and/or its discretized counterparts possess

higher than three-dimensional (or infinite dimensional) dynamical behavior, the projections of

these higher dimensional dynamics onto a 2-D or 3-D topology can lead to misinterpretation of
flow types.
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HI. PRELIMINARIES FOR ODEs AND ODE SOLVERS

Consider a 2 × 2 system of first-order autonomous nonlinear ODEs of the form

dU

d--i = aS(U), (3.1)

where U and S are vector functions of dimension 2, a is a parameter and S(U)is nonlinear in

U. For simplicity of discussion we consider only autonomous ODEs where a is Iinear (constant

scalar factor) in (3.1); i.e., a does not appear explicitly in S. Other types of system parameters

may be included in S but are not explicitly stated at this point. See section IV for more details.

A fixed point UE of an autonomous system (3.1) is a constant solution of (3.1); that is

s(uE) = o, (3.2)

" x t"where the subscript "E" stands for e ac and UE denotes the fixed points of the ODE as

opposed to the additional fixed points of the discretized counterparts (spurious fixed points)

due to the numerical methods which we will encounter later. Note that the terms "equilib-

in " singular points", "stationary po ts , "fixed points" and evenrium pots , "critical points", " " _ in "

"steady-state solutions" are sometimes used interchangeably in the literature and we adopt these
nomenclatures in the rest of this text.

Let the eigenvahies of Y(UE) = osFU [u_ (the Jacobian matrix of S(U) evaluated at UE) beA1

and A2. Here J(UE) is assumed to be nonzero. The fixed point UE is hyperbolicifRe(Ai)¢ 0,

i =1,2. If both )_i are real, UE is a saddle if A1A2 < 0 and a node if A1)_z > 0. If exactly one

hl = 0, then UE is semihyperbolic. If the eigenvalues are complex, then UE is a spiral. Re

"tightness" of the spiral is governed by the magnitude of the imaginary part of the eigenvalues.

If the eigenvalues both have a zero real part, then UE is non-hyperbolic. Such a fixed point is

called a center. Under this situation, more analysis is needed to uncover the real behavior of

(3.1) around a non-hyperbolic fixed point. The fixed point UE is stable if both A1 and A2 have

negative real parts. UE is unstable if a Ai has a positive real part. In the non-hyperbolic case

the fixed point is neutral.

If due to a variation of a parameter of the ODE a fixed point becomes unstable, then, if

at the point of instability the eigenvalues are distinct and real, the resulting bifurcation will

be to another fixed point. Such bifurcation is called a steady bifurcation. If, however, the

eigenvalues are complex, then the bifurcation will be of a Hopf type. This is a slightly simplified

classification, since our main concern in this work is not on the variation of the ODE parameter.

Detailed background information can be found, e.g., in [1-4].

Consider a nonlinear discrete map from a finite discretization of (3.1)

U '_+1 = U '_ + D(U'_,v), (3.3)

where v = sat and D(U '_, r) is linear or nonlinear in v depending on the ODE solver. Here v

is used to represent the time step At which may include any constant scalar factors a present in
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(3,1). In mostof the ODE models considered later, a = 1. A fixed point Up of (3.3) is defined

by U '_+a = U '_, or

or

Up = Up + D(UD,,) (3.4a)

D(UD,,) = 0. (3.4b)

In the context of discrete systems, the term "fixed point" without indicating the period means

"fixed point of period 1" or the steady-state solution of (3.3). Here we use the term asymptote

to mean a fixed point of any period, a limit cycle, chaos, or a strange attractor.

The type of finite discretizatiorl of (3.1) represented in (3.3) assumed the use of two-time

level schemes. Otherwise the vector dimension of (3.3) would be 2(k-1) instead of 2 where k

is the number of the time level of the scheme. Here the vector function D is assumed to be

consistent with the ODE (3.1) in the sense that fixed points of the ODE are fixed points of the

scheme; however, the reverse need not hold. It is this feature, that the discretized counterparts of

the underlying ODE possess a much richer dynamical behavior than the original ODE. which

forms the core of this study. Thus the fixed points UD of D(UD,,) - 0 may be true fixed

points UE of (3.1) or spurious fixed points Us. The spurious fixed points Us are not roots of

S(U) - O. That is S(Us) :,= O.

Letting U n = UD + _5'_, then a perturbation analysis on (3.3) yields

Assuming OD(UD,,.)OU

cOD(UD, r') ) -+1= (3.5)
,5'_+1 I + OU

0, then the numerical fixed point Up is stable if the eigenvalues of

cOD(UD,,)
JD = + OU (3.6)

lie inside the unit circle. If both eigenvalues are real and both lie inside (outside) the unit circle,

then the fixed point is a stable (unstable) node. If one is inside the unit circle and the other

outside, then the fixed point is a saddle. If both eigenvalues are complex, then the fixed point is

a spiral. If the eigenvalues lie on the unit circle, then the fixed point of (3.3) is indeterminant and

additional analysis is required to determine the true behavior of (3.3) around this type of fixed

point. For a more refined definition and the difference in fixed point definition between ODEs

and discrete maps, see [54-58] and references cited therein. A similar definition (with additional

classification) for steady and Hopf bifurcation as the ODE holds true for (3.3). However, we

now are concerned with the manner in which the real or complex eigenvalues cross the unit

circle when a fixed point becomes unstable. The reader is referred to [1-4,59,60] for full details

on the subject of bifurcation theory.

An important feature which can arise (for both system of ODEs (3.1) and their discretizations)

as the result of a Hopf bifurcation is a limit cycle where the trajectory traverses a closed curve

in phase space, in all but a few simple cases such limit cycles are beyond analysis.
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IV. MODEL 2 × 2 SYSTEMS OF NONLINEAR FIRST-ORDER AUTONOMOUS ODEs

Four 2 × 2 systems of nonlinear first-order autonomous model ODEs are considered. The

purpose of choosing one of the models is to illustrate the numerical accuracy of computing a

limit cycle for the various ODE solvers. Two of these systems arise from the mathematical

modelling of physical and biological processes, namely, a damped pendulum and a simple

model of predator-prey interaction in population dynamics. The fourth system arises as a gross

simplification of finite discretization of a PDE. Since the purpose of the present study is to

illustrate the dynamics of numerics of ODE solvers, we do not treat any system parameter

present in the differential equations as a bifurcation parameter, but instead keep it constant

throughout each numerical calculation so that only the discretization parameters come into

play. The systems considered with U = (u, v) or z = u + iv are

1. A Dissipative complex model:

dz

dU: z(i + -jzl (4.1)

2. A Damped Pendulum model:

du

dt
dv

dt
ev - sin(u) (4.2)

3. A Predator-Prey model:

du _ 3u+4u 2-0.5uv-u 3
dt

dv
-- =-2.1v+uv
dt

(4.3)

4. A Perturbed Hamiltonian system model:

_ 3[ u2 2v( 1 u) 1
du e(1 - 3u) + 1 - 2u +
dt

dv =e(1-3v)-43[1-2v+v 2-2u(1-v)j
(4.4)

Here e is the system parameter for (4.1), (4.2) and (4,4).
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Before investigatingthe fixedpoints of theseODEs,we showthe perturbedHamiltonian
Osystem's relationship with the numerical solution of a PDE. Consider the viscous Bur_,ers

equation with no source term

Ou 10(u 2) 02u
O-i-+ - Z > O. (4.5)

Let ud(t ) represent an approximation to u(xj,t) where xj = jAx, j = 1,...,d, with Ax

the uniform grid spacing. Consider the three-point central difference in space with periodic
J

condition uj+j = u j, and assume _j=_ uj = constant, which implies that _jJ--1 dwdt -- 0. For

simplicity, take J = 3 and A ;c = 1/3. Then, with e = 9fl,

dUl
3 lu_ - u_,["\ = e(u2 - 2ul q- u3) (4.6a)+ k /

-+ = e(u3 - 2u2 + ul) (46b)

dU_dt+ 43(u} - u_) = e(uI - 2u3 + u_) (4.6c)

3 duj
--/_j=l dt -0" (4.6d)

This system can be reduced to a 2 >_2 system of first-order nonlinear autonomous ODEs (4.4):

In this case, the nonlinear convection term is contributing to the nonlinearity of the ODE system
(4.4).

These four equations were selected to bring out the dynamics of numerics for four different

types of solution behavior of the ODEs. The dissipative complex system (4.1) possesses either

a unique stable fixed point or limit cycle with an unstable fixed point depending on the value

of e. This is the rare situation where the analytical expression of a limit cycle can be found.

The damped pendulum (4.2) exhibits a periodic structure of an infinite number of fixed points

(nonunique stable and unstable fixed points). The predator-prey model (4.3) exhibits multiple

stable fixed points without a periodic pattern as model (4.2). As stated earlier, the perturbed

Hamiltonian model (4.4) which arises as a gross simplification of finite discretization of the

viscous Burgers' equation, exhibits an unique stable fixed point. Following the classification

of fixed points of (3.1) in section III, one can easily obtain the following:

Fi_ed Point of (4.1): The dissipative complex model has a unique fixed point at (0,0) for

e _< 0. The fixed point is astable spiral ife < 0. It is acenterife = 0. Fore > 0, the

fixed point (0,0) becomes unstable with the birth of a stable limit cycle with radius equal to _,/_

centered at (0,0). Figure 4.1 shows the phase portrait (u - v plane) of system (4.1) for e = -1

and e = 1 respectively. Here the entire (u, v) plane belongs to the basins of attraction of the

stable fixed point (0,0) if e < 0. On the other hand, if e > 0, the entire (u,v) plane except the

unstable fixed point (0,0) belongs to the basins of attraction of the stable limit cycle centered

at (0,0).
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Fi_eed Points of (4.2): The damped pendulum (4.2) has an infinite number of fixed points,

namely (kzr, 0) for integer k. If k is odd, the eigenvalues of the Jacobian J(UE) are of opposite

sign and these fixed points are saddles. If k is even, however, two cases must be considered,

depending on the value of e. If e < 2 and positive, the eigenvalues are complex with negative

real part and the fixed points are stable spirals. If e > 2, the eigenvalues are real and negative

and the fixed points are nodes. If e = 0, the spirals become centers. Figure 4.2 shows the phase

portrait and their corresponding basin of attraction for system (4.2). The different shades of

grey regions represent the various basins of attraction of the respective stable fixed points for
e = 0.5 and e = 2.5.

Fi_ed Points of (4.3): The fixed points of the predator-prey equation are less regular than

those for the damped pendulum equation. System (4.3) has four fixed points (0,0), (1,0), (3,0)

and (2.1,1.98). By looking at the eigenvalues of the Jacobian of S, one finds that (0,0) is a stable

node, (2.1,1.98) is a stable spiral, and (1,0) and (3,0) are saddles. Figure 4.3 shows the phase

portrait and their corresponding basins of attraction for system (4.3). The different shades of

grey regions represent the various basins of attraction of the respective stable fixed points. The

white region represents the basin of divergent solutions.

Fi_eed Points of (_._): The perturbed Hamiltonian (semi discrete system of the viscous Burg-

ers' equation with three-point central difference in space) has four steady-state solutions of

which three are saddles and one is a stable spiral at (1/3, 1/3) for e ¢ 0. For e = 0 the stable

spiral becomes a center. Figure 4.4 shows the phase portrait and their corresponding basins of

attraction for system (4.4). The shaded region represents the basins of attraction for the fixed

point (1/3, 1/3) for e = 0 and e = 0.1. The white region represents the basin of divergent solu-

tions. From here on we refer to (4.4) also as a viscous Burgers' equation with central difference

in space.
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V. ODE SOLVERS AND BIFURCATION DIAGRAMS

This section describes the 11 time discretizations and their corresponding bifurcation dia-

grams for the four model ODEs (4.1)-(4.4). The 11 ODE solvers are listed in section 5.1.

Section 5.2 discusses the stability of selected fixed points of the discretized counterparts of

three of the model ODEs ((4.1), (4.2) and (4.4)) as functions of system parameters. Section

5.3 discusses the nonlinear stability (bifurcation diagrams) of the discretized counterparts as a

function of the discretized parameter e (with the system parameter held fixed).

5.1. ODE Solvers

The ODE solvers considered are the explict Euler, two second-order Runge-Kutta, namely,

the modified Euler (R-K 2) and the improved Euler (R-K 2), a third-order Runge-Kutta (R-K

3), the fourth-order Runge-Kutta (R-K 4), the two and three-step predictor-corrector [61-63],

and noniterative linearized forms of the implicit Euler and the trapezoidal methods.

(1) Explicit Euler (R-K 1):

U,_+I = U ,_ + rS'_; S, _ = S(U'_), (5.1)

(2) Modified Euler (R-K 2):

/

U '_+a = U '_ + ,S (U '_

(3) Improved Euler (R-K 2):

+ (5.2)
2 /"

U'_+*=Un+_ S'_ + S(U'_ + .S_ , (5.3)

(4) Heun (R-K 3):

U n+l = U n _- -_ kl + 3k3

kl = S '_

k2 = S U '_ + gkl

k3=S U'_+_-k2 , (5°4)

21



(5) Kutta (R-K 3):

(6) R-K 4:

U n+l .__ U n -_ -6 kl _y 4k 2 -_ k 3

kl = S n

k2 =S U '_+_kl

k3 = S(U'_ - rkl + 2,k2),

U n+l =U n+ _ kl +2k2+2ka +k4

kl = S '_

k_ = S U n + _kl

k3 = S U n + _k_

k4=S(Un+,k3),

(5.5)

(5.6)

(7) Predictor-corrector for m=2,3 (PC2, PC3):

U (°) = U n + rS '_

U(k+ _) = U '_ + _ S '_

U'_+_ = U_ + -2 S '_

(8) Adam-Bashforth (2nd-order):

k = O, 1,...,rn-1

_+_ = u _ + _ 3s(U_) _ s(u_-, ,

(9) Linearized Implicit Euler:

y_+ _ = U n + ,(I - ,jn)-_S,_

(5.7)

(5.s)

(5.9)
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and det(I- vjn) _ 0,

(10) Linearized Trapezoidal:

U n+_ = g '_ + v(I- _J'_) S '_ (5.10)

and det - ¢0,

where the numeric identifier after the "R-K" indicates the order of accuracy of the scheme

and v = A_ with a = 1 in (3.1) and det( ) means the determinant of the quantity inside

the (). See Beam and Warming [64,65] for the versatility of the linearized implicit Euler

and linearized trapezoidal methods in CFD applications. Studies on Newton method and some

iteration procedures other than the noniterative forms (5.9) and (5.10) for the Implicit Euler

and Trapezoidal methods will be reported in a separate paper. A comparison between Newton

method and the linearized implicit method (5.9) for model (4.4) is included in section 6.5.

Although the explicit Euler can be considered as an R-K 1, it is also a LMM. All of the R-K

methods (higher than first order) are nonlinear in the parameter space At (or v). As discussed in

[5], a necessary condition for an ODEs solver to produce spurious fixed points is the introduction

of nonlinearity in the parameter space v. For simplicity in referencing, hereafter we use "implicit

Euler" and "trapezoidal" to mean the linearized forms (5.9) and (5.10), respectively, unless
otherwise stated.

5.2. Stability of Fixed Points of Numerical Methods as a Function of System Parameters

As mentioned at the beginning of section IV, our study assumes a fixed system parameter

so that only the discretized parameter comes into play. However, in order to get a feel for the

numerical stability around selected stable fixed points Us as a function of the system parameter

e, Figs. 5.1 - 5.3 show the stability regions of the schemes as a function of the system parameter

e for the ODE models (4.1), (4.2) and (4.4) around a selected fixed point for each of the models.

The linearized stability regions for the R-K methods of the same order behave in exactly the

same manner, and the linearized stability regions around stable UE of the linearized implicit

methods are not interesting, since they have the same regions of stability as the ODEs.

The stability diagrams presented were obtained by numerically solving the absolute stability

polynomials for the various methods, in most cases using Newton iteration.

For the Runge-Kutta schemes (of order p _< 4) the stability [60] condition is that

1 A2v2 Avvv+Av+ } +... p_-- <1, (5.11)

where )_ are the eigenvalues of the Jacobian of S(U).
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ForPredictor-Correctorof stepsp = 2, 3 the stability condition is that

1 /_PPP+AT,+...+ _-

and for the Adams-Bashforth method the roots # of

< i, (5.12)

3Av #
#_-(1+-2- )_ +2=0 (5.13)

satisfy I#J < 1. Note that all of these expressions only hold for the UE fixed points of the
system.

In all cases the boundary of the stability region is when unit modulus is attained. The lin-

earized implicit Euler and trapezoidal rnethods are unconditionally stable for the Stable exact

fixed points UE of the ODE systems we are considering.

These stability regions can be used to isolate the key regions of the e parameter to be consid-

ered for the study of dynamics of numerics later. Due to the enormous number of possibilities,

detailed study: can only concentrate on one to two representative system parameters. Even with

such a restriction, as can be seen later, computing the corresponding bifurcation diagrams and

basins of attraction is very CPU intensive. Fortunately the computation can be made Nghly

parallel. Figures 5.1 - 5.3 also can serve as a spot check on the numerical results presented in
the next section.

5.3. Bifurcation Diagrams

In this section, we show the bifurcation diagrams of selected R-K methods and: summarize the

spurious dynamical behavior of the 11 ODE solvers based on a selected domain of initial data

and ranges of the discretized parameter At. The key point is to illustrate the many ways in which

the dynamics of a numerical discretization of 2 × 2 first-order autonomous nonlinear system

of ODEs can differ from the system itself. Another point iS to gain some basic understanding

of the difference in the dynamics of numerics between the scalar and systems of nonlinear

ODEs. Due to the fact that there is no limit cycle or higher dimensional tori counterparts for

the scalar first-order autonomous ODEs, spurious limit cycles and higher dimensional tori can

only be introduced by the numerics when solving nonlinear ODEs other than scalar first-order

autonomous ODEs (if 2 time-level schemes are used) and/or by using a scheme with higher
than two time levels for the scalar first-order autonomous ODEs. Later we contrast these results

with the combined basins of attraction and bifurcation diagrams presented in section VI. We

purposely present our results in this order (not showing the basins of attraction) in order to

bring out the importance of basins of attraction for the time-dependent approach in obtaining
steady-state numerical solutions.

Although we purposely selected the model equations with known analytical solutions, de-

pending on the scheme, the dynamics of their discretized counterparts might not be that easy

to analyze. We found that mathematical analysis of the dynamics of numerics for higher-order
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schemesis not practical,evenwith the aid of algebraicmanipulatorssuchasDERIVE [66],
MAPLE [67], or MATHEMATICA [68]. Only someanalysisis possiblefor the lower order
schemesfor a few of the models. In particular,someanalyticallinearizedanalysis(without
numericalcomputations)of fixed pointsof periodsoneandtwo is possiblefor thepredator-
preyandthedampedpendulumcase.However,analyticalanalysisfor thedissipativecomplex
modelandtheperturbedHamiltonianis not practical.For adetailedanalysisof theseselected
cases,readersarereferredto SwebyandYee[16]. For themajorityof thecaseswhererigorous
analysisis impracticalwe havestill beenableto investigatethedynamicsof numericsusing
numericalexperiments.

As statedin section2.1,someglobalsolutionbehaviorof fixedpointsof thediscretizedcoun-
terpartof ODE solvers(5.1) - (5.10)for (4.1) - (4.4)canbeobtainedby thepseudoarclength
continuationmethoddevisedbyKeller [51], astandardnumericalmethodfor obtainingbifurca-
tion curvesin bifurcationanalysis.Onedeficiencyof :thepseudoarclengthcontinuationmethod
is that for problemswith complicatedbifurcationpatterns,it cannotprovide thecompletebi-
furcationdiagramsinceaknownsolutionfor eachof the mainbifurcationbranchesis needed
beforeonecancontinuethe solutionalonga specificmainbranch.For spuriousasymptotesit
is usuallynoteasyto locateevenjust onesolutiononeachof thesebranches.

The natureof our calculationsrequiresthousandsof iterationsof the sameequationwith
different rangesof initial dataon a preselected(u, v) domain and ranges of the discretized

parameter space At. Since the NASA Ames CM2 allows vast numbers (typically 65,536) of

calculations to be performed in parallel, our problem is perfect for computation on the CM2.

With the aid of the CM2 it was possible to obtain both full bifurcation diagrams in a (v, u)

plane and orbits with their basins of attraction in the phase plane (u, v). This provided a

detailed picture of the dynamical behavior of the discretizations which would have been almost

impossible (within a reasonable time frame) using scalar or vector computers.

To obtain a "full" bifurcation diagram, the domain of initial data and the range of the At

parameter are typically divided into 512 equal increments. For each initial datum and dxt, the

discretized equations are preiterated 1,000 - 5,000 before the next 5,000 - 9,000 iterations are

plotted. The preiterations are necessary in order for the trajectories to settle to their asymp-

totic value. Since the results are a three dimensional graph ((v, u, v)), we have taken slices

in v = constant planes in order to enhance viewing and decrease CPU computations. Bear in

mind that with this method of computing the bifurcation diagrams, only the stable branches are

obtained. That is, unstable fixed points and unstable asymptotes are not present on our bifur-

cation diagrams. Some of the bifurcation diagrams in a v = constant plane for the four model

ODEs and for the modified Euler, improved Euler, Kutta and R-K 4 methods are shown in Figs.

5.4 - 5.8. Figure 5.4 shows a typical example of spurious stable fixed points occurring below

the linearized stability by the modified Euler method. It also shows the existence of spurious

asymptotes such as limit cycles, higher order periodic solutions and possibly numerical chaos.

See later sections and subsections for further details. Bifurcation diagrams for the rest of the

ODE solvers are illustrated in section VI with basins of attraction superimposed (see Figs. 6.5

- 6.7, 6.12 - 6.14, 6.19 - 6.21, 6.27 - 6.29, and 6.31). Due to the plotting package, the labels

(u,_, v,_) on all of the figures are the same as (u '_, v'_).

25



Theterm"full bifurcation" asdefinedin Yeeet al. [5] isusedto meanbifurcationdiagrams
obtainedwith aproperchoiceof initial datato covertheessentiallower-orderperiodsin such
a way asto ctoselymimic the exactor "true" bifurcationdiagramof the underlyingdiscrete
map.This isnecessarysincesolutionswith differentinitial conditionswill convergeto different
asymptoticlimits. It is notedthat exceptin raresituations,it is not possibleto get the"true"
bifurcationdiagramof theunderlyingdiscretemapnumerically.

Thefollowing summarizesthespuriousdynamicalbehaviorof the11ODE solversbasedon
selecteddomainsof initial dataandrangesof thediscretizedparameter2xt. Numericalresults
agreewith someof theanalyticallinearizedanalysis(withoutnumericalcomputations)reported
in SwebyandYee[16].

Bifurcation Diagrams of ODE Solvers for Model (4.1): Recall from section IV that the clissi-

pative complex model (4.1) possesses a unique fixed point at (u, v) - (0, 0) (stable spiral or

center) if e < 0. For e > 0 the stable fixed point at (0,0) becomes unstable, v_l,v_ea_ t:_,,_,_& of

a unique stable limit cycle with radius x_ centered at (0,0_ is encountered. Note. also tb_a_ for

e - 0, the system is nondissipative (or a Hamiltonian system), and all of the 11 ODE soivers

converge quite slowly to the fixed point (0,0). We think that schemes such as the simplectic

type [69] can do a better job for this type of ODE. For sufficiently small negative (positive)

e, all of the studied schemes converge extremely slowly to the stable spiral (limit cycle). This

is a typical example of slow convergence of the numerical solution due to the stiffness of the

system parameter. While the bifurcation diagrams for e < 0 for the various ODE sMvers are

not too interesting, the bifurcation diagrams for e > 0 are very instructive. Figure 5:.5 shows

the bifurcation diagrams for the four R-K methods for e - 1. Note that the labels "v = aDU

on these figures is equivalent to "7, - 2x_" with "a = 1". The trapezoidal method produces no

spurious steady states. However, the implicit Euler method in additon to maintaining an uncon-

ditionally stable feature of the exact limit cycle, also tums the unstable fixed point U_ - (0, 0)

(the exact unstable fixed point of the ODE (4.1) for e > 0) into a stable fixed point. See Figs.

6.7, 6.10 and 6.11 for additional details.

Note also that R,K 4 method gives :the most overall accurate numerical approximations of

the true limit cycle with radius _fe centered at (0,0). The Adam-Bashforth, implicit Euler and

trapezoidal methods give the least accurate numerical approximation of the limit cycle for

cIoser to the linearized stability. The R-K 4 and Heun methods produce spurious higher-order

limit cycles. See section IV and Figs. 6.8 and 6,10 for more details. These diagrams illustrate

the unreliability of trying to compute a true limit cycle with any sizable r. This should not

be surprising since the scheme only gives an 0(7 'p ) approximation to the solution trajectories,

and, since the limit cycle is not a fixed point, we would expect inaccuracies to be introduced.

However, it would not be easy to detect in practice, especially when a numerical solution

produces the qualitative features expected. See section VI and Figs. 6.5 -6.tl for additional

details. All of the studied explicit methods produce spurious asymptotes.

Bifurcation Diagrams of ODE Solvers for Model (4.2): All of the studied 11 explicit and im-

p!icit methods produce spurious asymptotes. In particular, some of the explicit methods (even

explicit Euler) produce spurious limit cycles for certain e values. For certain ranges of At and
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evaluestheimplicit Eulerandtrapezoidalmethodsturnthesaddlepoints(fixedpointsof (4.2))
into anunstablefixedpoint of differenttype (seeFigs. 6.14,6.17and6.18).For themodified
Euler method,spurioussteadystatesoccurbelow thelinearizedstabilitylimit of the scheme.
SeesectionVI andFigs. 6.12- 6.18 for additionaldetails.

Bifurcation Diagrams of ODE Solvers for Model (4.3): Again, all of the studied 11 explicit and

implicit methods generate spurious asymptotes. Also, some of the explicit methods produce

spurious limit cycles. For certain ranges of the At, the trapezoidal method turns the saddle

points (exact fixed points of (4.3)) into unstable fixed points of different types. Moreover, for

certain ranges of the At the implicit Euler method turns the saddle points (exact fixed points

of (4.3)) into stable or unstable fixed points of different type. The numerical results coincide

with analytical analysis by examining the eigenvalues of the Jacobian of the resulting discrete

map. Transcritical bifurcations introduced by the R-K 4 method resulted in the production of

spurious steady states below (and very near) the linearized stability limit of the scheme. See

section VI and Figs. 6.19 - 6.26 for additional details.

More than one spurious fixed point below the linearized stability of the scheme was intro-

duced by the modified Euler method (see Fig. 5.4). From the form of the Modified Euler

scheme it is easily seen that as well as the exact fixed points UE of the ODEs, any other value

Us satisfying

Us +  S(Crs) = uE (5.14)

will also be a fixed point of the scheme. As mentioned earlier, we refer to these additional fixed

points as spurious fixed points. Note that the UE on the right-hand side of (5.14) encompasses

both stable and unstable fixed points of the ODE and so, for the predator-prey equations (since

S contains cubic teiTns in U), there are up to twelve (real) spurious steady states, three for each

exact fixed point UE. In fact there are six such spurious steady states which lie in the v = 0

plane. All of them occur below the linearized stability limits of the exact fixed points, although

not all are stable there. Four (stable ones) of the six are shown in the bifurcation diagram of

Fig. 5.4. numbered 1,3,4,6 of the bifurcation branch. The other two are unstable. See Sweby

and Yee [16] for additional analysis. Note also that the branch numbered 6 is in fact not stable

but represents the stable eigen-dlrection (separatrix) in the v = 0 plane of a saddle point.

Bifurcation Diagrams of ODE Solvers for Model (4.4): For e -- 0, the ODE (4.4) is nondlssi-

pative. Thus when At is below the linearized stability limit of the respective 11 schemes, slow

convergence was experienced. For At beyond the linearized limit with e = 0, all of the explicit

methods produce spurious limit cycles.

For e > 0 (and not too large) all of the studied 11 explicit and implicit methods produce

spurious asymptotes. Also, all of the explicit methods produce spurious limit cycles. For

e = 0.1, the Kutta and Heun methods introduce spurious asymptotes (higher than period one)

that are below the linearized stability limit of the scheme. The linearized stability limits of the

two implicit methods are similar to their explicit counterpart. The trapezoidal method turns the

fixed point (u, v) = (1/3, 1/3) (the exact stable fixed point of the ODE (4.4)) into a spurious
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period2 solution(seeFig. 6.34). SeesectionVI andFigs.6.27- 6.34for additionaldetails.

Summa13_ of the Bifurcation Study of ODE Solvers for Models (4.1) - (4.4): Some of these fig-

ures show an interesting consequence of the technique for locating fixed points. For example,

since the stable manifold of the saddle at (3,0) for the predator-prey equation (see Figs. 5.4 and

5.7) lies in the v - 0 plane, it has been detected and represented on the bifurcation diagram.

In most of the cases when the spiral becomes unstable the eigenvalues are complex and Hopf

bifurcation occurs giving rise to a limit cycle. These numerical results indicate that bifurcation

to a period two solution is readily detectable in numerical calculations. However, bifurcation to

a limit cycle will not be so obvious (without a phase portrait representation), especially in the

vicinity of the bifurcation point and in higher dimensional problems. Indeed the phenomenon

of an artificial time iteration to steady state of a large system formed by spatial dlscretization,

which nears convergence before the residuals "plateau out", could actually be the result of a

stable spurious limit cycle near the Hopf bifurcation point. Also, the above phenomenon of

bifurcation of spirals to limit cycles might account in part for the phenomenon of near (but lack

of) convergence in large systems. In addition, depending on the dissipation parameter of the

system and also the dissipative nature of the scheme, if these dissipation parameters are small

(stiff), extremely slow convergence can occur as we encountered in the cases for e < < 1 for

systems (4.1), (4.2) and (4.4) for all of the explicit and implicit methods. The implicit Euler

method exhibits a faster convergence than the trapezoidal formula and explicit methods.

Note that although no spurious fixed points are generated by the Euter scheme (figures not

shown), spurious higher order periodic solutions, stable or unstable, are possible (e.g., the

predator-prey equation and damped pendulum equation, figures not shown). See Sweby and

Yee [16] for analysis. See also Fig. 6.15. As can be seen in section VI, such spurious solutions
can have a drastic effect on the basins of attraction of the true fixed points. By looking at the

bifurcation diagram, one will not be able to get the full picture of the dynamics of numerics.

In particular methods like the pseudo arclength continuation method would not even be able

to provide the full bifurcation diagram since this method needs no referencing of the strong

dependence of asymptotes on initial data.

For explicit methods, it appears that unstable fixed points of the ODEs in general will not

become stable fixed points of the scheme, but the type of the fixed point may change. The

situation is different for implicit LMM methods. Although all of the explicit methods behave

somewhat differently, they have very similar bifurcation patterns. However, the implicit meth-

ods have a very different bifurcation pattern than their explicit counterparts. The next section

provides additional global asymptotic numerical solution behavior (or the corresponding basins

of attraction) of the 11 ODE solvers for models (4.1) - (4.4). Section VI illustrates that bifurca-

tion diagrams alone do not tell the whole story; i.e., which initial data lead to which asymptotic
states:

It should always be kept in mind that in our illustrations, due to their relatively simple nature

and the manner of presentation of results (i.e., full representation of parameter space), the

spurious dynamics have been readily detected. _s will not always be the case in practical

computations,: especially where higher order systems are involved.
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VI. BASINS OF ATTRACTION AND BIFURCATION DIAGRAMS

This section illustrates how basins of attraction can complement the bifurcation diagrams in

gaining the global asymptotic numerical solution behavior for nonlinear DEs. Before discussing

numerical results for each of the model ODEs, the next subsection gives some preliminaries on

how to interpret the basins of attraction diagrams.

6.1. Introduction

Analytical representations (except in isolated cases) for numerical basins of attraction rarely

exist for nonlinear DEs. Methods such as generalized cell mapping [56,70-73] can provide an

efficient approach to locating these basins, but might not be exact. Here our aim is to numeri-

cally compute the basins of attraction as accurately as possible and in the most straightforward

way in order to illustrate the key points. Bear in mind that we are not advocating this approach

of obtaining basins of attraction for all computations since it is very CPU intensive and thus

impractical for frequent use or for higher-dimensional complicated systems of nonlinear ODEs.

As stated in section 5.3, the numerical experiments for this study are most suited for a highly

parallel computer such as the CM2. A detailed picture of the numerical basins of attraction can

be obtained rather quickly on the CM2 which would be almost impossible (within a reasonable

time frame) using scalar or vector computers. Here we use the term "exact" and "numerical"

basins of attraction to distinguish "basins of attraction of the DEs" and "basins of attraction of

the underlying discretized counterparts".

As a preliminary, and before discussing our major results, we discuss the numerical basins

of attraction associated with modified Euler, improved Euler, Kutta and R-K 4 methods for the

two scalar first-order autonomous nonlinear ODEs studied in part I of our companion paper [5].

The two scalar ODEs are:

and

du

dt (6.1)

du

d--i: - - (6.2)

The fixed points for (6.1) with a > 0 are u = 0 (unstable) and u = 1 (stable), and no additional

higher order periodic fixed points or asymptotes exist. The basin of attraction for the stable fixed

point u = 1 is the entire positive plane for all values of a > 0.

The fixed points for (6.2) with a > 0 are u = 0 (unstable), u = 1 (unstable) and u = 0.5

(stable) and no additional higher-order periodic solutions or asymptotes exist. The basin of

attraction for the stable fixed point u = 0.5 is 0 < u < 1 for all a > 0. Figures 6.1 and 6.2

show the bifurcation diagrams for four of the R-K methods for (6.1) and (6.2). As described in

29



section5.3, thebifurcationdiagramsarecomputedusingthe CM2 machinewith 512 equally
spacedinitial datapointsandAt of the domains in question. For more details of the dynamics

of numerics for systems (6.1) and (6.2), see Yee et al. [5]. From the fixed point analysis,

aside from the difference in topography of the bifurcation curves, all of these diagrams share

a common feature: they all exhibit stable and unstable spurious fixed points, as well as fixed

points of period higher than one. In particular, for the modified Euler. Kutta and R-K 4 methods,

spurious fixed points occurred below the linearized stability of the scheme.

Intuitively, in the presence of spurious asymptotes the basins of the true stable steady states

can be separated by the basins of attraction of the stable spurious asymptotes and interwoven by

unstable asymptotes, whether due to the physics (i.e.. present in both the DEs and the discretized

counterparts) or spurious in nature (i.e., introduced by the numerical methods). In other words,

associated with the same (common) steady-state solution, the basin of attraction of the DE

might be very different from the discretized counterparts. This is due entirely to the different

dependence on and sensitivity to initial and boundary conditions (numerical or analytical, if

any) for the individual system. Take, for example, the ODE (6.1) where the entire domain u

is divided into two basins of attraction for the ODE independent of any real c_. Now if one

numerically integrates the ODE by the modified Euler method, extra stable and unstable fixed

points can be introduced by the scheme, depending on the value of r. That is. for certain

ranges of the v values the domain u is divided into four basins of attraction. But, of course

higher period spurious fixed points exist for other ranges of v, and more basins of attraction are

created within the same u domain.

From the bifurcation diagrams 6.1 and 6.2 it is difficult to distinguish the types of bifurcation

and the periodicity of the spurious fixed points of any order. Figures 6.3 and 6.4 show the

numerical basins of attraction with their respective bifurcation diagrams (white curves and

white dense dots) superimposed. Note "a" in Figs. 6.1 - 6.4 is "a" in equations (6.1) and (6.2).

The selected ranges of domains and £xt are divided into 512 equal increments. For each initial

data inside the domain and At ranges, we iterate the discretized equations typically 10,000 times

(more or less depending on the problem and scheme) and keep track of where each initial data

asymptotically approaches and color code them according to the individual asymptotes. The

basins of attraction for the various methods were computed and color coded according to this

procedure. Unless noted, the black regions represent divergent solutions. Note that basins with

the same color do not mean they have the same period, but rather for each v value within the

preselected domain of initial data, the number of distinct basins are color coded. Details of the

techniques used for detection of the orbits and basins of attraction are given in the Appendix of

Sweby and Yee [16]. Note that in all of the plots, if color printing is not available, the different

shades of grey represent the diffferent colors.

Figures 6.3 and 6.4 show not only which initial data asymptote to which stable asymptotes,

but also indicate the types of bifurcation behavior (full bifurcation diagram). The white curves

and white dense dots represent the full bifurcation diagrams. Any initial data residi'ng in the

green region in Fig. 6.3 for the modified Euler method belong to the numerical basin of attrac-

tion of the spurious (stable) branch emanating from u = 3 and v = 1. Thus, if the initial data

is inside the green region, the solution can never converge to the exact steady state using even
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a smallfixedbut finite At (all below the linearized stability limit of the scheme). Note that the

green region extends upward as, decreases below 1.

A similar situation exists for the R-K 4 method (Fig. 6.3), except now the numerical basins

of attraction of the spurious fixed points occurred very near the linearized stability limit of

the scheme, with a small portion occurring below the linearized stability limit. In contrast to

the improved Euler method (Fig. 6.3), the green region represents the numerical basins of

one of the spurious stable transcritical bifurcation branches of the fixed point. The bifurcation

curve directly below it with the corresponding red portion is the basin of the other spurious

branch. See [5] or [3] for a discussion of the different types of bifurcations. The black regions

represent divergent or nonconvergent solutions (after the preselected number of iterations has

been reached). With this way of color coding the basins of attraction, one can readily know

(from the plots) that for ODE (6.2), the improved Euler experiences two consecutive steady

bifurcations before period doubling bifurcation occurs (Fig. (6,4)). Using the PC3 method to

solve (6.2) (figure not shown; see [5]), four consecutive steady bifurcations occur before period

doubling bifurcations. The modified Euler and R-K 4 methods, however, experience only one
steady bifurcation before period doubling bifurcations occur.

The next section presents similar diagrams for the 2 x 2 systems of model nonlinear ODEs

(4.1) - (4.4). In this case, only basins of attraction with bifurcation diagrams superimposed on

v = constant planes are shown (to enhance viewing and decrease CPU computations). Basins of

attraction with the asymptotic phase trajectories superimposed on the phase plane with selected

values of At are also shown. These selected values of 2x_ are obtained by looking at the

combined basins of attraction and bifurcation diagrams on the various v = constant plane. The

latter basins of attraction diagrams exhibit a clearer and more complete picture of the basins of

attraction than the former type of diagrams. However, one needs the former diagrams to guide

the selection of the A_ values. One can see the added complication when going from scalar

ODEs to 2 × 2 system of ODEs. Unlike the exact basins of attraction and asymptotic phase

trajectories shown in Figs. 4.1 - 4.4, only the stable asymptotes are plotted.

In all of Figs. 6.5 - 6.34, a = 1 unless indicated, and black regions represent divergent

solutions (after the preselected number of iterations has been reached). White dots and white

curves on the basins of attraction with bifurcation diagrams superimposed represent the bifur-

cation curves. White dots and white closed curves on the basins of attraction with the phase

trajectories superimposed represent the stable fixed points, stable periodic solutions or stable

limit cycles. Also bear in mind that for the basins of attraction with bifurcation diagrams su-

perimposed, the different colors represent the different numerical basins of attraction for each

, value. Due to the high cost of logic in keeping track of the color coding procedure, it is not

possible to keep the same color for the numerical basins of attraction of a particular asymptote

as At is varied. These types of plots might appear to be confusing at first and require some

familiarization before their meaning becomes transparent. On the other hand, the basins of

attraction with asymptotic phase trajectories superimposed are easier to read.
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6.2. Numerical Results for the Dissipative Complex Equation

Recall that the exact basin of attraction for the model (4.1) is the entire phase plane (see

Fig. 4.1) for all real e < 0 for the stable spiral (0,0). For e > 0, the entire phase plane except

the unstable fixed point (0,0) is the exact basin of attraction for the stable limit cycle with

radius _;,_ centered at the unstable fixed point (0,0). Figures 6.5 - 6.11 show the two types of

numerical basins of attraction diagrams and phase portrait diagrams for e = 1 for some of the

ODE solvers. The basins of attraction are color coded and computed in the same manner as

discussed in the previous section.

Comparing Figs. 6,5, 6,6 and 6.7 with Fig. 5.5, one can appreciate the added information

that the basin of attraction diagrams can provide. The key result is that as At moves closer to

the linearized stability limit of the limit cycle, the size (red) of the numerical basins of attraction

decreases rapidly. _s is due to :the existence of spurious unstable asymptotes below as well

as above the lineafized stability limit. The green region, shown in Fig, 6,7 using the implicit

Euler method, is the numerical basin of attraction for the attracting fixed point (0,0). Note how

the implicit Euler method turns an unstable fixed point of the ODE system into a stable one for

7-_1.

Figures 6.8 and 6.9 show the phase trajectories for four different At by the R-K 4 and implicit

Euler methods, respectively. Note how little information these figures can provide as compared

to Figs. 6.10 and 6.11. Note also how rapidly the size of the basin (red)decreases as _"increases

for the R-K 4 method. _s phenomenon can relate to practical computations where only a

fraction of the allowable line_zed stability limit of At is safe to use if the initial data is not

known. For At = 1.75 and 2, spurious limit cycles of higher order period exist.

Figure 6.11 illustrates the situation where unconditionally stable LMM schemes can converge

to a wrong solution if one picks the initial data inside the green region (which is expected to

be a physical initial data for the ODE) instead of the red region. Thus even though LMM

preserved the same number of fixed points as the underlying ODE, these fixed points can change

types and stability. This phenomenon can relate to the "non-robustness" of linearized implicit

methods sometimes experienced in CFD computations, where if the initial data are not known,

the highest possibility of avoiding spurious asymptotes is to use a fraction of the allowable

linearized stability limit of At.

Figures 6.8 and 6.9 are obtained by dividing the (u, v ) domain into 512 × 512 points of initial

datum. With each initial datum and At, we preiterate the respective discretized equation 5,000

steps and plot the next 6,000 steps. Figures 6.10 and 6.11 is obtained by dividing the (u, v)

domain in the same manner but with the basins of attraction superimposed. The remaining Figs.

6.15 - 6.17, 6.22 - 6.26, 6.30, and 6.32 - 6.34 are computed in the same way.

6.3. Numerical Results for the Damped Pendulum Equation

The exact basins of attraction for model (4.2) are shown in Fig. 4.2 with different shades of

grey color. The two types of numerical basin of attraction diagrams for all of the studied ODE
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solvers for e = 1 and e = 1.5 are shown in Figs. 6.12 - 6.18. Here, for each At value the

different colors represent different numerical basins of attraction of the respective asymptotes.

Observe the striking difference in behavior between the explicit and implicit methods. From

the different colors of the basins in Fig. 6.15 one can readily identify that spurious higher

than period one and spurious limit cycles exist for the different At values. For At = 1.4, the

scheme produces spurious period two fixed points. Figure 6.16 shows the existence of spurious

fixed points below the linearized stability limit by the modified Euler method and spurious fixed

points of period 4 (the four white dots on each basins) above the linearized stability limit by the

R-K 4 method. Figures 6.17 and 6.18 show the evolution (birth and death) of spurious fixed

points of higher-order period for the implicit Euler and trapezoidal methods. These figures

illustrate yet another situation where unconditionally stable schemes can converge to a wrong

solution even though these schemes preserved the same number and type of fixed points as the

underlying ODE. In tt-ds case it is the birth of spurious stable and unstable asymptotes or even

numerical chaos that contribute to the size reduction of the true basins of attraction of the ODE.

6.4. Numerical Results for the Predator-Prey Equation

The exact basins of attraction for model (4.3) is shown in Fig. 4.3 with a lighter shade of

grey for the stable spiral (2.1,1.98) and a darker shade of grey for the stable node (0,0). _e

two types of numerical basins of attraction diagrams for all of the studied ODE solvers (except

explicit Euler) are shown in Figs. 6.19 - 6.26. Comparing Figs. 6.19, 6.22 and 6.24 with Figs.

5.4 and 5.7, one can again appreciate the added information that the basin of attraction diagram s

can provide. Here for all of Figs. 6.22 - 6.26 (except Fig. 6.22 for the last four At values and

Fig. 6.23 for At = 0.37 and At = 0.46), the green regions represent the numerical basins

of attraction for the stable spiral (2.1,1.98) and red regions represent the numerical basins of

attraction for the stable node (0,0). We present more basins of attraction in the (u, v) plane

for the predator-prey equation than the other three because this is one of the most interesting

models (next to the perturbed Hamiltonian model) among the four. Besides, we want to present

a general representative dynamical behavior of the studied ODE solvers.

In summary, all explicit methods have a distinct but similar trend in bifurcation diagrams and

basin of attraction diagrams. See how the schemes redistribute and recreate spurious basins of

attraction (numerical basins of attraction other than the ones belonging to the exact fixed points

of the ODEs). Note how the numerical basins of attraction bear no resemblance to the exact

basins of attraction for 7>values that are not sufficiently small. In addition, observe how the

dynamics of numerics of the two implicit methods differ from each other and how they differ

from the explicit method.

Take, for example, one of the most interesting cases, the modified Euler method. Figure 6.22

shows how spurious stable fixed points can alter the numerical basins of attraction of the stable

node and spiral. For At : 0.8, the stable node bifurcates into a spurious fixed point. Without

performing the bifurcation analysis one would not be able to detect this particular spurious fixed

point, since the value of the spurious one is so close to the exact fixed point U_v = (0, 0). For

At = 0.9524, there is the birth of a spurious limit cycle (the white close curve). For At = 1.2,
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spurioushigher-orderperiodicsolutionsexist.Notethatfor thefirst four At values in Fig. 6.22,

the fixed points and asymptotic values are colored black instead of white due to the existence

of "spurious" numerical basins of attraction that are colored white.

As discussed in section 5.3, the implicit method can turn saddles into stare and unstable

fixed points of a different kind. Thus, without the basins of attraction, it would be more dif-

ficult to avoid spurious dynamics (when using a fixed time step that is larger than the explicit

counterpart). Note that standard variable time step control might alleviate the problem, but

it is not foolproof. With a clear picture of the basins of attraction, spurious dynamics can be

avoided. The size of the numerical basins of attraction by the implicit Euler method sett!e

down after At _> 3. The two fixed points (2.1,1.98) and (0,0) are unconditionally stable and

the newly "created" (i.e., fixed points that change type with no additional fixed points created

beyond the exact ones) stable fixed points (1,0) and (3,0) (sadNes for the original ODE) are

almost unconditionally stable except for small At. This is the most interesting case in the sense

that the numerical basins of attraction for UE of the model (4.3) by the implicit Euler method

were permanently altered for At near or larger than 3 (similar to most of the linearized stability

limits for R-K methods). No newly created stable fixed points were generated by the trapezoidal

method. The evolution of the numerical basin of attraction as At changes is very traumatic.

The scheme becomes effectively unstable for 2xt near 10,000. The size of the numerical basins

of attraction for the stable exact fixed points U_ is reduced to almost nonexistence. The basins

are so fragmented and small and they are beyond the accuracy of the single precision of the

CM2. Due to the high cost of double precision computations on the CM2, no further attempt

was made for At near 10,000. A better approach in computing these types of basins is the use

of interval arithmetic or the enclosure type method [74]. These are yet two more illustrations

where in practice linearized implicit methods have a higher success rate of leading to a physi-

cally correct solution if one uses a At far below what the linearized stability limit predicts (in

this case equivalent to typical explicit methods).

6.5. Numerical Results for the Perturbed Hamiltonian Equation

The exact basins of attraction for model (4.4) are shown in Fig. 4.4. The shaded regions

represent the exact basin of attraction for the stable spiral (1/3,1/3) or center. The two types

of numerical basins of attraction of the various ODE solvers are shown in Figs. 6.27 - 6.34.

Our investigation indicates that all of the studied Runge-Kutta methods exhibit spurious limit

cycles and other spurious periodic solutions. For the Kutta and Heun methods, stable spurious

asymptotes can occur below the linearized stability of the scheme. In addition, all of the studied

explicit and implicit methods exhibit spurious asymptotes, in particular, unstable spurious

asymptotes were produced below the linearized stability limit by all of the studied schemes.

Although this example consists of an artificially small number of grid points, it can shed some

light on the interplay between initial data, spurious stable and unstable asymptotes, basins of

attraction and the time-dependent approach to the asymptotic numerical solutions. A solid

understanding of this concept at the fundamental level can help to determine the reliability of

the time-dependent approach to obtaining steady-state numerical solutions.
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In all of Figs. 6.32 - 6.34, red regionsrepresentthe numericalbasinsof attractionfor the
stablespiral(1/3,1/3)whenAt is belowthelinearizedstabilityof thescheme.WhenAt isabove
thelinearizedstability,someof theredregionsrepresentthenumericalbasinof attractionof the
stablespuriousasymptotes.The discussionis restrictedto the second-orderimprovedEuler,
theKutta, the implicit Eulerandthetrapezoidalmethods.

Implw, ed Euler Method: To give an example of the existence of spurious limit cycles and its

effect on the numerical basins of attraction for the exact steady state for e > 0 (stable spiral

fixed point at (1/3, 1/3) ), Fig. 6.30 shows the basins of attraction of the improved Euler method

for 4 different At = 0.1, 1, 2.25, 2.35 with fl = .1. By a bifurcation computation shown in

Fig. 6.27, we found that the first two time steps are below the linearized stability limit around

the exact stable steady state (1/3, 1/3), and the last two time steps are above the limit. Through

this numerical study, the following phenomena were observed:

(a) Below the linearized stability limit of the scheme, no spurious stable steady states were

observed (see Figs. 6.27 and 6.30). However, this does not preclude the existence of unstable

spurious asymptotes that can influence the numerical basins of attraction of the true steady

states. As a matter of fact, this is precisely the case. The red regions are the numerical basins

of attraction for (1/3, 1/3) for At -- 0.1 and 1 respectively. The black region is the numerical

basin of divergent solutions. Increasing the time step to At = 1 (below the line_zed stability

limit) resulted in an enlargement of the numerical basin of attraction for (1/3, 1/3). In other

words, what was expected to be nonphysical initial data can now actually be in the numerical

basin for (1/3, 1/3).

(b) Above the linearized stability limit spurious limit cycles and higher dimensional periodic

solutions were observed (see Figs. 6.27 and 6.30). Further increasing At resulted in numerical

chaos type phenomena and eventually divergence (with additional increase in At). What is

expected to be physical initial data now can either converge to a spurious limit cycle or other

periodic solution or diverge. Now the red or multicolors are the basins of the spurious limit

cycle (the irregular white closed curve shown on Fig. 6.30) and the spurious periodic solution

(white dots for Fig. 6.30). For these latter two time steps the numerical basins for the exact

steady state (1/3, 1/3) by the improved Euler method disappeared. However, if the initial data

are in the red or multicolor region, one gets nonconvergence of the numerical steady state

instead of what the linearized stability predicts. The phenomena observed above might well be

an explanation of the nonrobustness or nonconvergence of numerical methods encountered in

practice.

(c) Although no spurious steady-state numerical solutions exist for this case, the existence

of unstable asymptotes below the linearized stability limit and/or the existence of stable and

unstable asymptotes above the linearized stability limit is just as detrimental to the numerical

basins of attraction for the true steady state as if a spurious steady state occurred below the

linearized stability limit. In the latter case, however, a spurious steady-state can be mistaken

for the true steady state in practical computations.

Kutta Method: To give an example of the existence of spurious asymptotes below the linearized
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stabilitylimit of thescheme,aswell astheexistenceof spuriouslimit cylesabovethelinearized
stabilitylimit, Fig. 6.32showsthebasinsof attractionof theKuttamethodfor 6 differentfixed
time stepsAt -- 0.1, 1, 1.826, 1.85, 2.75and 2.785 (the first four below the linearized
stability of thescheme)with e= 0.1. Theredregionsarethenumericalbasinsof attractionof
theasymptoticstate(1/3,1/3)for thefirstfour At. Thesamedomain,andsamenumberof initial
dataanditerationsastheimprovedEuler casewereused.All of thephenomenaobservedfor
the improvedEuler methodholdtrue for the currentcase.In addition,newphenomenaarise
that complicatethe numericalbasinof attractiontremendously.This occursin the form of
stableandunstablespuriousasymptotesbelow thelinearizedstablility of thescheme(seeFig.
6.31),_[]aenumericalbasinfor (1/3, 1/3)hasbecomefractal like with thebirth of fragmented,
isolatednew basinsof attractiondueto thepresenceof spuriousperiodic solutions(thethree
white complicatedclosedcurveswith the associatedpurple,greenandbluebasinsshownin
Fig. 6.32). Forthecaseof theexistenceof unstablespuriousasymptotes,thenumericalbasins
for (1/3, 1/3) is fractal like. Figure6.32 alsoshowsthe basinsfor the spuriouslimit cycles
abovethelinearizedstabilitylimit. In general,thesebasinshavesimilarstructureandfeatures
astheimprovedEutermethodexceptthatno higherorderperiodic solutionexists.Note also
that with the sametime stepAt = 1, bothODE solversbehaveapproximatelyin a similar
manner(i.e,enlargementof thenumericalbasinof attractionfor (1/3,1/3).

Implicit Euler Method: This is yet another interesting illustration of the use of an uncondition-

ally stable implicit method where in practical computations, when the initial data are not know,

the scheme has a higher chance of obtaining a physically correct solution if one uses a At

restriction slightly higher than an explicit method. Figures 6.29 and 6.33 show the two types

of numerical basins of attraction using the implicit Euler method. Figure 6.33 shows the gen-

eration of stable spurious asymptotes for At > 1. Note that the numerical basin of attraction

(red) for (1/3, 1/3) is larger than the corresponding exact basin of attraction for At < 1. As At

increases further, the size of the same numerical basin decreases and becomes fractal like, and

new numerical basins are generated. The behavior is similar to the predator-prey model (4.3)

in a sense that the numerical basin of attraction for (1/3,1/3) was permanently altered for At

near or larger than 10.

Trapezoidal Method: Figures 6.29 and 6.34 show the two types of numerical basins of attraction

using the trapezoidal method. As in the implicit Euler case, this scheme has a higher chance of

obtaining a physically correct solution if one uses a At similar to that of an explict method. The

numerical basins of attraction for (1/3, 1/3) are much larger than the corresponding exact basin

of attraction for At < 2. Their sizes are bigger than the ones generated by the implicit Euler

method with the same At values. Observe the interesting phenomena for At = 500 where

spurious stable periodic solutions occur (white dots near the three saddle (numerical) regions

away from (1/3,1/3) with the scattered small basins of divergent solutions. As At increases fur-

ther, the size of the same numerical basin decreases. For At near 10,000, the scheme becomes

effectively unstable due to the fragmentation of the numerical, basins of attraction. Again due

to the high cost of double precision computations, no further attempts were made for At near

10,000. The computation of these basins requires an interval arithmetic or the enclosure [74]

type of mathematical operation before a more precise behavior can be revealed.
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Newton Method:

Figure 6.35 shows the basin of attraction using Newton method compared with the implicit

Euler at At = 1. One can see that Newton method has a smaller attracting basin for the stable

spiral (1/3,1/3) than the implicit Euler method for At < 100,000. In fact its basin (independent

of At) is the same as the implicit Euler using At = 1,000,000. Figure 6.35 illustrates the

situation where quadratic convergence by Newton method can be achieved only if the initial

data are in the red regions. Figure 6.35 also illustrates the fact that using very large A_ by the

(linearized) implicit Euler method has the same chance of obtaining the correct steady state as

the Newton method if the initial data are not known. Comparison of Newton method with other

iteration procedures for the implicit Euler and trapezoidal methods will be reported in a future

paper.

From the above study of the dynamics of numerics of ODEs and ODE solver combinations,

one can conclude that depending on the initial data, for a given At below the linearized sta-

bility limit, the numerical solution can (a) converge to an exact steady state, (b) converge to a

spurious periodic solution, (c) yield spurious asymptotes other than (a) and (b), or (d) diverge,

even though the initial data are physically relevant, tn general, for different nonlinear DE and

numerical method combinations, the numerical solution can have all the phenomena discussed

in Table 1.1 in addition to the above phenomena. To get a feel for numerical basins of at-

traction for a combination of a variety of time discretizations and commonly used upwind and

central spatial discretizations, similar but less extensive studies were performed for a model

reaction-convection PDE. They are reported in our companion papers [8.18].

VII. Concluding Remarks

The symbiotic relationship between the strong dependence on initial data and the permissi-

bility of spurious stable and unstable asymptotic numerical solutions for commonly used time

discretizations in CFD are illustrated for four different nonlinear model ODEs with known an-

alytic solutions. Although in actual computations variable time steps or local time-stepping are

used, our study is restricted to the case where the time step and grid spacing are fixed in order

to gain an understanding of the global asymptotic behavior of ODE solvers from a fundamental

level for highly nonlinear and stiff DEs.

The implications we reached in [5,7,8] on asymptotic numerical solution behavior of finite

discretizations for strongly nonlinear CFD computations are reconfirmed here with additional

insights and analysis for 11 different commonly used explicit and implicit time discretizations in

CFD. The numerical basins of attraction for the explicit Euler method, five different multistage

Runge-Kutta methods (modified Euler, improved Euler, Heun, Kutta and 4th-order methods),

two and three-step predictor-corrector methods, Adams-Bashforth method, and implicit Euler

and trapezoidal method with linearization are compared for different model nonlinear ODEs.

With the aid of the CM2, the complex behavior and sometimes fractal like structure of the asso-

ciated numerical basins of attraction of these time discretizations are compared and revealed for

the first time. Due to the fact that there is no limit cycle or higher dimensional tori counterparts
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for thescalarfirst-orderautonomousODEs,spuriouslimit cyclesandhigherdimensionaltoil
canonly be introducedby thenumericswhensolvingnonlinearODEsotherthanscalarfirst-
orderautonomousODEs(if two time-level schemesareused)and/orby usinga schemewith
higherthantwo timelevelsfor thescalarfirst-orderautonomousODEs.Our numericalresults
indicatethat with sufficientlysmall At andinitial datacloseto the steadystate(usuallynot
knownfor thetime-marchingmethod),onecanhavethehighestchanceof convergenceto the
correctasymptote.Ournumericalresultsalsoindicatethatbifurcationto aperiodtwo or lower
orderperiodssolutionis readilydetectablein numericalcalculations.However.bifurcationto
a limit cyclewill not besoobvious(withoutaphaseportrait representation),especiallyin the
vicinity of the bifurcationpoint andin higherdimensionalproblems.Indeedthephenomenon
of anartificial time iterationto steady-stateof a largesystemformedby spatialdiscretization,
which nearsconvergencebeforethe residuals"'plateauout", could actuallybe the result of a
stablespuriouslimit cyclearoundtheHopfbifurcationpoint. In addition,thebifurcationof spi-
ralsto limit cyclesmightaccountin partfor thephenomenonof near(but lackof) convergence
in largesystems.

Oneimportantfindingis that for a givennonlinearDE andachoosenODEsolver,the size
of thenumericalbasinsof attractionchanges(decreasesnormally) asthetime stepincreases
eventhoughthe time stepis within the linearizedstability limit. Our numericaly._mdyshows
that the numericalbasinsof attractionfor all of the 11ODE solversmight contractin one
direction,expandin anotherdirection,contractor expandin morethanonedirection,expand
in all directions,or bevery different from the exactbasinsof attractionof the original DE,
dependingon the numericalmethod andthe time _tep(regardlesswhetheror not the time
discretizationsareLMMs). In otherwords,for a giveninitial dataandtwo finitedifferentbut
notsufficientlysmallAt's thatarebelow thelinearizedstabilitylimit, theirnumericalsolutions
might convergeto two different solutionsevenif no spuriousstablesteady-statenumerical
solutionis introducedby theschemeandtheinitial dataarephysicallyrelevant.The sourceof
thebehavioris dueto theexistenceof unstable spurious asymptotes or stable asymptotes other

than steady states which have the same detrimental (in terms of robustness) effect. However,

in the case of the occurrence of stable spurious steady states, they can be mistaken for the true

steady states in practical computations.

Another important finding is that unlike the scalar first-order autonomous ODE discussed in

part I, the fixed points can change types as the time step is varied even for two-time level LMMs

for 2 2 systems of first-order autonomous ODEs. An unstable fixed poini can become a stable

fixed point and can e.g., change from a saddle to a stable or unstable node. One consequence

of this behavior is that the flow pattern can change type as the discretized parameter is varied

even though the flow type of the DE remains unchanged. Also all of the studied explicit and

noniterative linearized implicit methods can introduce spurious fixed points of higher order

period below and above the linearized stability limit of the scheme. Thus even though LMMs

preserve the same number (but not the same types) of fixed points as the underlying DEs, the

numerical basins of attraction of LMMs (explicit or implicit) do not always coincide with the

ex act basins of attraction of the DEs. The present results can explain the root of why we cannot

achieve the theoretical linearized stability limit of the typical implicit Euler and trapezoidal

time discretizations in practice when solving strongly nonlinear DEs e.g., in CFD. The results
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canalsoshedsomelight in bridgingsomeof thegapsbetweentheoreticalconvergencecriterion
(At -_ 0, asr_ + oo) and practical scientific computation (finite At as r_ -_ c_).

We emphasize here that in order to isolate the different causes and cures of slow convergence

and nonconvergence of time-marching methods, our study concerns nonlinearity and stiffness

that are introduced by DEs containing smooth solutions. Nonlinearity and stiffness that are

introduced by the scheme, by the coupling effect in the presence of source term (terms) in a

coupled sy stem of PDEs, by highly stretched nonuniform structured and unstructured grids, by

discontinuities in grid interfaces and/or discontinuities inherent in the solutions, and by external

flows that need special boundary condition treatment with a truncated finite computation domain

are added factors and require additional treatment or different analysis. For some of the causes

and cures of these issues, the readers is referred to the various excellent work appearing in the

Proceedings of the ICFD Conference in Numerical Methods for Fluid Dynamics [75]. The use

of the dynamics of numerics as an alternate to address these issues is a subject of continuous
research.
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Possible Stable Asymptotic Solution Behavior for DEs

and Their Discretized Counterparts

So|ution

Type

Steady-State
Solutions

Periodic Solutions

Chaos

ODEs:or PDEs

Single

Multiple

No

Yes

No

Yes

Discretized
Counterparts

Single

Multiple

Same # of Multiple

Additional # of Multiple

Yes

Yes (+ Extra)

Yes

Yes (+ Extra)

Table 1.1
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Genuinely Nonlinear Behavior of Asymptotic Numerical

Solutions of Nonlinear PDEs vs. Time Steps

BELOW

CFL or Linearized Stability Limit

Can converge to

(a) gg.r.r.g_exactsteadystate

{b) incorrectexactasymptotes

(c) spuriousasymptotes

(d) divergentsolution

ABOVE

CFL or Linearized Stability Limit

Same as BELOW

Except(a)

Table 1.2
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Stability Guidelines for Time Step Constraints for
Time-Dependent Approach to Steady-State Numerical Solutions

Type

Assumption
&

Usage

Stability
Region

Initial
Data (IC)

Applicability

CFL Limit Linearized Linearized Nonlinear

(vonNeumannanalysis) Stability I Stability II Stability

perturbedaroundun perturbedaroundexact:SS

Ignorethe sourceterm includethe sourceterm
if exists if exists

Insldethe stability Interval_ convergesto
the correctSS

outside the stability interval_ diverges

spurious
asymptotes

exist

!ocal behavior _obal behavior
weakly nonlinear strongly nonlinear

consistsof a single car_consistof
continuousinterval disjointintervals

strongdependence
onIC

noconceptof strong
dependenceonIC

insufficientfor
stronglynonlinear

DDEs& PDEs

closerto
nonlinear
analysis

for strongly
nonlinear

ODEs& PDEs

(ss: steady state)

Table 1.3
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Types of Time-Dependent PDEs

Fleaction-Cenvection-

Diffusion PDEs
r

Homogeneous PDEs

Nonhomogeneous PDEs

(_ Source Terms)

Nonhomogeneous PDEs
(Nor_iinear Source Terms)

Convection and/or Diffusion

Linear Nonlinear

Table 2.1
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Existence of Spurious Asymptotic Numerical Solutions

for Homogeneous 1.D Hyperbolic and Parabolic PDEs

PDEType:

_---...._scretizations

possible
SpuriousAsymptotes_"--..._

SSS

S. Limit Cycles

S. Tori

Numerical Chaos

Homogeneous PDEs
(Linear)

Time Spatial

No

Homogeneous PDEs
(Nonlinear)

Time

No Yes

Spatial

No

(SSS: Spurious Steady States; S: Spurious)

Table 2.2
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Existence of Spurious Asymptotic Numerical Solutions for

Nonhomogeneous 1-D Hyperbolic and Parabolic PDEs

PDEType

Convection/Diffusion

_cretization

SSS

S. Limit Cycles

S. Tori

Numerical Chaos

Nonhomogeneous: PDEs
(Linear Source Terms)

Linear

Time SpatiaJ

No No

NonhomogeneousPDEs
(Nonlinear SourceTerms)

Nonlinear Linear

Time Spatial Time

YesYes Yes

Spatial

Yes

Nonlinear

Time Spatial

Yes Yes

(SSS: Spurious Steady States; S: Spurious)

Table 2.3
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Phase Portraits & Basins of Attraction
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Phase Portraits & Basins of Attraction

Damped Pendulum Equation
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Phase Portrait & Basins o_ Attraction

Predator-Prey Equation
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Phase Portraits & Basins of Attraction

Viscous Burger's Equation (Central Difference in Space)
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Stability Regions vs. System Parameters
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Stability Regions vs. System Parameters

Viscous Burgers' Equation (Central Difference in Space)
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Stability Regions vs. System Parameters

Viscous Burgers' Equation (Central Difference in Space)
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Predator-Prey Equation, v = 0.0

Un

Modified Euler

t A
0

-1 I , , =_i , i

'00.2 0.6 1. 114
I

1.8
-1

Un

4 Improved Euler

0.2 0 6 '110'114
i ,r = aDt

1.8

U n

4-

3 -

2-

0

-1

Kutta

0:2 '0:6 '1 i0 '11.4 '118
, -1

U n

4 R-K4

_,,---="q9

iI

-4

o12'o16 '11o'114'11_ ,r=aDt

Figure 5.7

64



Un

1.5

1.0

0.5

o.o

--0.5-

Bifurcation Diagrams

Viscous Burgers' Equation, _ = 0.1, v = 0.333

(Central Difference in Space)

Modified Euler 1.5

"h

1.0

0.5

0.0

-0.5

U n

Improved Euler

-1.0 , I -1.0
0.5 1.0 1'.5 2'.0 21.5 3.0 0.5 110 1'.5 210 2L.5

r = aDt

3'o

1.0

0.5

0.0

-0.5

Kutta 1.s

1.0

0.5

0.0

-0.5

U n

R-K 4

-1.0
0.5 1,0 1'.5 210 215 310 -1.0 1.5 210 215 3'.0

r = aDt

3'.5

Figure 5.8

65



U n

Bifurcation Diagrams

u'- - au(1-u)

Modified Euler

! I I I I I

2 3 4

1.2

0.8-

0.4

0.0

Un

Improved Euler

I I I

2 3

f"

I

4

r = aDt

Url

1.2

0.8

0.4

0.0 = I

1 2

Kutta

\

I

3

1.2

0.8

0.4

, 0.0
4

Un

R-K 4

I !7

r = aDt
I

Figure 6.1

•' 66



1.0

0.8

0.6

0.4

0.2

0.0

Un

Modified Euler

I I I

7 9 11 13 1;

Bifurcation Diagrams

u'= au (l-u) (O,5-u)

Un
1,0

0.8

0.6

0.4

0.2

0.0

Improved Euler

!

r= aDt

1.o

0.8

0.6 --

0.4

0.2

0.0
7

Un

Kutta

I I I

11 13

1.0

0.8

0.6

0.4

0.2

, 0.0

Un

r = aDt
1

18

Figure 6.2

67





Figure 6.3

68







• i



......Figure 6.5 .....

7O





Fibre 6,6

71





72





Phase Trajectories
Dissipative Complex Equation, _ = 1

R-K 4

-1

-3

V n

At = 0.5

-3 _l1

-1

Vn

3-

1 I | [ --3 L L I

1 3 -3 -1

At = 1.5

U n
I

3

-1

-3

Vn

3-

I I

-1

At = 1.75
V n

3

-1

At=2

@

U n

| , , _ -3 , E1 , , = ,1 3 -3 - 1 3

Figure 6.8

73





v n
3-

-1

-3

-3

Phase Trajectories
Dissipative Complex Equation, E = 1

Linearized Implicit Euler

v n

At = 0.5 3

-1

At = 1.5

I1 I I I | --3 I- 1 11 I I3 -3 - 1
url

!

3

-1

-3
-3

Vn
3

v n

At=2 3-

, ; , , -3 , ,-1 3 -3 -1

At=4

I I I

1 3

U n

Figure 6.9

74



2 _

f



Fi_e 6.I0

75





'76





......Fi_e 6.12

77





....... Fibre 62i3 ..........

78





79



i ii_i̧ •_ _



............................................Fibre 6,I5 •

80





81





Figure6.17

82





83





........ 6.I9 .......

84





..... •.... _ !iii_iiiiiii_i_i_!_

iiiiiiiii_

iiiiii!il

.....Fibre 6

85





_.__ii__

_,i_ _ _





.... ............. Figure 6.22 ......................

87





........... _ i!!ii-iiiilHiļ!i i
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